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The Lie algebra of the group of point transformations, leaving the Davey-Stewartson
equations (DSE’s) invariant, is obtained. The general element of this algebra depends on four
arbitrary functions of time. The algebra is shown to have a loop structure, a property shared by
the symmetry algebras of all known (2 + 1)-dimensional integrable nonlinear equations.
Subalgebras of the symmetry algebra are classified and used to reduce the DSE’s to various

equations involving only two independent variables.

I. INTRODUCTION

The purpose of this paper is to apply the method of sym-
metry reduction to the Davey-Stewartson equations
(DSE’s).! To do this we first obtain the group of Lie point
symmetries leaving the DSE’s invariant. We show that this
group is infinite dimensional, study its structure, and deter-
mine its low-dimensional subgroups. The different sub-
groups are then used to reduce the DSE’s to a lower-dimen-
sional system.

We recall that the DSE’s describe the propagation of
two-dimensional water waves moving under the force of
gravity in water of finite depth. We shall write these equa-
tions in the form

v, + ¥, +6¥Y, =6V¥+Yuw,

W, + 8w, =8,(|¥%),,,
where ¥ (x,p,t) and w(x,p,?) are a complex and real func-
tion, respectively, and &,, §,, €,, and ¢, are real constants,
with €, = + 1, &, = + 1. The subscripts in (1.1) denote
partial derivatives.

For purely one-dimensional propagation (along the x
axis) we have ¥, = Oand can consider solutions withw = 0.
The DSE’s (1.1) then reduce to the nonlinear Schrodinger
equation

W, + ¥, = 6|V, (1.2)

The DSE’s thus have the same relation to the nonlinear
Schrodinger equation as the Kadomtsev—Petviashvili equa-
tion® has to the Korteweg—de Vries one, they provide a two-
dimensional generalization in which the basic direction of
wave propagation remains a privileged one.

The DSE’s belong to the rather limited class of equa-
tions in more than 1 + 1 dimensions that are exactly integra-
ble® by inverse scattering techniques and their generaliz-
ations.*® In particular, the DSE’s were shown to have soli-
ton and multisoliton solutions.?

Some recent work has been devoted to the study of sym-
metry groups of integrable equations in more than two di-
mensions.” 2 Thus the Kadomtsev—Petviashvili equation,’
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the modified Kadomtsev—Petviashvili equation,® the poten-
tial Kadomtsev—Petviashvili equation,'? and the integrable
three-wave problem'®! all have infinite-dimensional sym-
metry groups. The corresponding infinite-dimensional Lie
algebras all have a specific loop algebra structure. They all
have Virasoro-type subalgebras and can be embedded into
simple classical loop algebras of the 4 {’ type.'*> On the other
hand, some of the multidimensional equations of the Jimbo—
Miwa series,'* which are integrable in a conditional sense,’
have been shown to have infinite-dimensional Lie symmetry
algebras that are not loop algebras.’

In Sec. II we present the symmetry algebra of the DSE’s
and exhibit its loop algebra structure by relating it to the
algebra sl(7,C). We also obtain the group transformations
by integrating the vector fields forming the symmetry alge-
bra. In Sec. III we classify the one- and two-dimensional
subalgebras of the DS algebra into conjugacy classes under
the action of the DS group. The one-dimensional subalge-
bras are used in Sec. I'V to reduce the DS equations to various
integrable systems in 1 4 1 dimensions.

il. THE SYMMETRY GROUP OF THE DAVEY-
STEWARTSON EQUATIONS
A. The DS symmetry algebra

Standard procedures exist for determining the symme-
try algebra of a system of differential equations.’® They are
so algorithmic that they have been successfully programmed
using REDUCE, '® MACSYMA,® or other symbolic languages.
In order to be able to apply a previously written program,®
we rewrite the DSE’s (1.1) in a real form, setting ¢ = u + iv.
We obtain

Ar=u, + v, + €0, — 60 +0°) —vw =0,
Ay=—v, +u, +eu, —ut*+v’) —uw=0,
Ay=w,, + 5w, 2.1)
—28,[un,, + (4,)* +w,, + (v,)*] =0.
An element of the symmetry algebra of (2.1) is written
as
V=7,0,+1,9,+1d, +¢,d, +4.9, +¢3?3’2)
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where 77; and ¢, ({ = 1,2,3) are functions of x, y, ¢, ¥, v, and
w. These functions are obtained by solving the determining
equations, that in turn follow from the equations

(2.3)

where pr®¥ is the second prolongation'® of the vector field
V. Applying the program® we obtain the determining equa-
tions, a relatively simple system of linear partial differential
equations for 7, and ¢,. By solving them we find that a gen-
eral element of the symmetry algebra of the DSE’s (2.1) can
be written as

prPV-A (xytupw)s, -0 =0, i=123,

V=X(H+Yg +Z(h)+ W(m), (2.4)
where
X()=f)3, + [ f()/2}(xd, +y3d, —ud,
—vd, —2wd,) — [(x*+ €, y*)/8]
X[ (wd, —ud,)+f"(1)d,],
Y(g) =g(t)d, — [x/2]
X[g@W(wd, —ud,)+g"()d,], (2.5)

Z(h) =h(1)d, — [€,y/2]

X[h'(B(Wwd, —ud,)+h"()d,],
Wim)=m(t)(vd8, —ud,) +m'(£)d, .
The functions g(¢), A(¢), and m(¢) are arbitrary real-

valued functions of class C* over some time interval TCR.
The function f(#) satisfies

arbitrary,
a+ bt +ct?,

if61= —€1= :tl,
if 81¢“'61

(a, b, and c are arbitrary real constants). The primesin (2.5)
denote derivatives with respect to time ¢. The DSE’s have
been shown to be integrable precisely in the case when we
have

Sr) = { (2.6a)

(2.6b)

i.e., when f(2) is allowed to be arbitrary. We shall mainly
concentrate on this case. The commutation relations for the
DS algebra (2.4), (2.5) are easy to obtain, namely

XD, XD =X(AF =112

X(H. Y@ l=Y(g—-S8/2),

[X(N, ZW))=Z(fh' —fh/2),

[X(NH, Wim)] = W(fm'),

[Y(g), Y(g2)] = — W(g\g; —£182)/2,

(Z(h), Z(h))] = —eW(hh;, —hihy)/2,

[Y(@), Z(M) ] ={Y(g), W(m)] = [Z(h), W(m)]
= [W(m,), W(m,)} =0.

We see that the DS Lie algebra L allows a Levi decom-
position®”

L=S4$N, (2.8)
where S = {X( f)}is asimple infinite-dimensional Lie alge-
braand N = {¥(g), Z(k), W(m)}is theradical of L, which
in this case happens to be a nilpotent ideal.

The “obvious™ physical symmetries of the DSE’s are

51= —‘61,

2.7

2 J. Math. Phys., Vol. 29, No. 1, January 1988

obtained by restricting all the functions £, g, A, and m to be
first-order polynomials. We then have

Py=X(1)=4,, P=Y(1)=4,,

P,=2Z(1)=4d,, Ry=W(1)=vd, —ud,,

D=X(t)=10d,+ (xd, +yd,
—ud,—vd,)/2—-wd,,

B, =Y(t)=1td, —x(vd, —ud,)/2,

B,=2Z(t)=td, —€,y(vd, —ud,)/2,

Ri=W(t)y=tvd, —ud,) +R,.

We see that P, P,, and P, generate translations in the ¢,
x, and y directions, respectively; D corresponds to dilations,
B, and B, to Galilei boosts in the x and y directions, respec-
tively. Finally R, corresponds to a rotation in the (u,v)
plane, i.e., a constant change of phase of ¥ (x,y,f) and R, toa
change of phase of ¥, linear in ¢, accompanied by constant
shift in w (see below).

2.9)

B. Loop structure of the DS symmetry algebra

Similarly as the algebra of the Kadomtsev—Petviashvili
equation,” the DS symmetry algebra for §, = — ¢, (and
only in this case) can be embedded into a Kac~-Moody type
loop algebra.’® To see this, let us restrict f; g, 4, and / to be
Laurent polynomials in ¢. A basis for this algebra is provided
by the operators

X"y =1t"3,+nt""'A/2 —n(n—1)t""4,/4
—n(n—1)(n—=2)t""*W,/4,

Y™y =t"X—nt""'4,/2 —n(n — 1)t"~W,/2, (2.10)

Z(t")y=t"Y —ent" " '4;/2 —en(n — D" 2W,/2,

W) =t"d, +nt""'W,,

where we have introduced the notation

A =xd, +yd, —ud, —vd, — 2w, ,

X=3, Y=9,

A =3(x*+€6y)wd, —ud,), A,=x(vd, —ud,),
Ay =y(wd, —ud,), A,=vd, —ud,, (2.11)
Wl'—‘%(xz-i'fxyz)aw’ W,=xd,,

Wy,=yd,, W,=d,.

The operators (2.11) form the basis of an 11-dimensional
solvable Lie algebra. It has a ten-dimensional nilpotent ideal,
the nilradical NR(L) = {X,Y,4,,4,,45,4, W, W,, W3, W,}.
In turn the algebra NR (L) has an eight-dimensional uniquely
defined maximal Abelian ideal {4, W,, i = 1,...,4}. The alge-
bra (2.11) can be embedded into the simple Lie algebra
s1(7, C). Indeed, consider the s1(7, C) matrix

B. Champagne and P. Winternitz 2



Setting all entries but one equal to 0 and the remaining one
equal to 1, we obtain 11 matrices having the same commuta-
tion relations as the vector fields (2.11) [6 = 1 corresponds
to the operator A, x =1 or y=1 to X or ¥, respectively,
a; = lorw, = 1toA; or W;, respectively (i = 1,...,4) ]. This
embedding provides us with an identification of the algebra
generated by X(¢*), Y(¢*), Z(¢t"), and W(¢") of (2.10).
We have obtained an infinite-dimensional subalgebra of the
affine loop algebra,

d(7,0) = [[R(z,t—‘) 8sl(7,C)] @ R(1,t -1)%} ,
(2.13)

The vector fields X (¢ ") form a simple subalgebra isomorphic
tothe Z-graded algebra {R (¢, ~!)d /dt}, which is in turn iso-
morphic to the Virasoro algebra (without a central exten-
sion).'® Notice also that each element of (2.10) has a well-
defined degree in a natural grading obtained by attributing the
degree n to the monomial #* and the degree u (0<u<6) to
each element of (2.11), where 1 is the distance from the diag-
onal in the matrix (2.12) to the corresponding element
(u=0forA,u=1ford,,p =2for X, Y,and W, etc.). The
degreesof X(¢"), Y(t"), Z(t"),and W(¢") arethusn — 1,
n+2,n+2,and n + 5, respectively.

J

(i) Case f(¢) =0,
FA) =x+g(t), §A) =y+ k@), 1(A)=¢,

(5 0 x4+ —€y 0 w, + €,( — )" w4 0 — 2w, N
0 -4 0 x+V—€y a+e€(—e€)%, 0 —2a,
0 0 26 0 cw, 0 —w, + €,( — €)"w,
< 0 0 0 0 ca, 0 a,+€,(—€)"a,
0 0 0 0 —25 0 x—(—e)V¥y
0 0 0 0 0 S 0
\0 0 0 0 0 0 -6 J
(2.12)

4
C. The group transformations

The elements of the connected part of the symmetry
group of the DSE’s are obtained by integrating the general
element of the DS Lie algebra (2.4). We consider separately
the cases f(¢) =0 and f(¢) #0. In each case we write the
vector field ¥ in the form (2.2), where %, and ¢, must be
specified, and integrate the equations

g T T
~ . ~ (2.14)
di _ é a4 _ é aw _ ¢
i " da T A T
where
7 =0 (R LE00), ¢ =, (XF5E,5,0) .
The boundary conditions are
Xico=% Plico=n ;'/l=0=t’
. - . (2.15)
fl_o=u Di_o=v Oli_o=w.

The results of this integration are presented below. For
each of the two cases mentioned above, we give the trans-
formed variables and the expression for the new solution in
terms of the original one.

V(2,5,1) = W(E — Ag(D),§ — Ah(D),1) exp i{(A /2)g (D) [% — (A /2)g(D)]

+ (/2 AR (D[ — (A /2)h(D)] — Am(D},

(2.16)

W(E L) = w[k —Ag(1),5 — Ah(2),t)] — (A /72)g" (D) [% — (A /2)g(1)] — (6,/2)AR " (D) [F — (A /2)h(£)] + Am' (D).

Setting g(¢) = h(¢) = 0in (2.16), we see that the presence of W (m) in the symmetry algebra simply means that the DSE’s are
invariant under an arbitrary time dependent change in the phase of ¥, compensated by an appropriate transformation of w.

(i) Case f(2) #0,

G =121 f g(s)f ~*2(s)ds, H(tP) =f”2(t)f h(s)f ~¥2(s)ds, #'(t) =

[#() can be any antiderivative of 1/f(¢)], we have

1
_ 2.17
I @17

£(A) = [x + Gt FEDVADIYE 5(A) = [y + HtLtA) FEDVAD]IY2, HA) =~ b)) +4),

o f(t)]"2~ [ - o [[f'(i) —f’(t)]]
‘I’ y =|—- 2V _—
(xJgt) [f(t) Y(x,p,t)expi} (X° + €, 7°) 8)

Lstaonin-{s®[L2] " - 50 + Lrwai]
+ 2x[f(t)f(t)] g G gy + 2f(t)G(t,t)

€1

2
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1 S(@ ~
+———[ (O)G(t,t) + e h(DH(,D)] — Gt H2(1,t
2f( ) ) 1 ] f( [ (1,t) + € (1,0)]
_ f £() + ek *(s) +2m(Hs) 4 ]
21%(s)
W(Zp,1) = [/ Twlxp,t)
1. - - .. -
— @+ QP D] DD - LS DF = 0 + U707 (2.18)
~ -~ - - - 172
—Lgpmiryp-ng [ [2¢ (W) — gD (D] [f(—’l]
4 S
- [28 (O —g(e)f'()] + [f”(t)f(t) —%[f’(t)]z]G(t,?)]
= Sgr s =2 | 126 GAE — DS D) [;“’; |”
— (2O =W O + [ 00 - S w0 | Hh)
~ 70 f(;) ——=—{[28" (A1) — g(O)f (D ]1G(1,1) + €,[2h"()f(1) — R(O)f (D 1H (1)}
” ——[f Gt H?(1,t
8f(t)f()[f()f() SOP[I6%0h + 1]
gz(t) + ek’ +4mOAD (1) + €421 + 4m()f (1)
42 (1) 4 (A1) )
¥
The variables x, y, and ¢ appearing on the right-hand side a(t) =f() /D),
of the expressions for ¥ and w in (2.18) are to be interpreted b 2
as functions of %, §, and 1, i.e., (t) =AD" g f(t)
() )
x = [%+ GO AN/,
=[P+ HEG)IFO/AD, =441 —A). —g(n) + if’(r)G(t,?)},
(2.19)
Note that by construction, a one-dimensional Lie subgroup of = [f()f(1))~ 12 {h 02 [f Q) ] v
transformations is generated if one fixes the functions g, 4, /in “( S0
(2.16),0r f, g, h, lin (2.18), and then allows the parameter A , ~
to take on arbitrary real values. —hO+ -—f (t)H(t’t)]’
The expressions for ¥ and @ in (2.16) and (2.18) can be (2.21)
used to generate new solutions of the DSE’s from known ones. J b7(s) texc (zi) )+ 2e(s)a(s) ds
More precisely, if (¥,w) is a local solution of the DSE’s in the s 5
neighborhood of (x,y,t) then (W,) given by (2.16) or f &(5) + €14 %(s) + 2m(s)f(s) ds
(2.18) will be a local solution of the DSE’s in the neighbor- f3s)
hood of (£(A4),7(4),t(A)), In particular, the application of the
transformations (2.16) and (2.18) to the “trivial” constant - }U[g(t)G(t 1) + eh(DH ()]
solution
Y(xp,t) =¥, wxpt) = —e|¥[, (2.20) {; f?; [G*th) +eHA1D)],

provides us with a family of solutions depending on three
arbitrary functions of time in the case of (2.16) and four arbi-
trary functions of titne in the case of (2.18).

By introducing new functions of time, it is possible to
obtain a much more simple expression than (2.18) for the
elements of the symmetry group of the DSE’s when f(#) 0.
Leta(z), b(1), c(t), and e(¢) be arbitrary real-valued func-
tions of class C* with the restriction that a(¢) #0. Then, for
a fixed value of the parameter A,, take f(¢), g(¢), h(2), and
I(t) in (2.17) and (2.18) to be the solutions of the following
system of functional equations:
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t=¢7"p() + 1), ¢'(0)=1f0).
Under these conditions, it can be verified that for appropriate
constants of integration ¢,, ¢,, ¢;, and c,, the transformations
(2.18) reduce to the following transformations when 4 = 4,
(and only for this value of A):

i= [x + fb(?)a~3/2(?)di + cl]a’”(;),

= [y + fc{?)a"m(?)d? + cz]a”z(?),

B. Champagne and P. Winternitz 4



p dt
= -1 t), t) = _— Cs,
s, S e +c3
V(%50 =a™ "W (xpt)exp i{a—(fcz +e ) + s
8a 2a
ec. 1(b? 2 4 deq -
+?la€y—?f—-—-———+ 6;:2 + Zea dt—c4] ,
(2.22)
" 2
ﬁ)(fc,jz,;) = a_lw(x’y’t) _ % (aa—a_zéa_)(iZ + € "}}2)

1 (2b ‘a — ba')~ 61(26"0 —ca')j'
_ (2% s _SfLLef—e?

4 a’ 4 a?
+i(b2+e,cz+4ea)

4 a® '
The functions a, b, c, e, and the derivatives of these fungtions
appearing in the right-hand side of the expressions for ¥ and
win (2.22) are all evaluated at £. Moreover, the variables x, y,
t appearing in the argument of ¥ and w in the same expres-
sions are to be interpreted as functions of %, 7, 7, i.e.,

x=%a""*) — fb(i)a“”z(i)di -,

y=ja" V(1) ——jc(;)a’”z(;)d;—cz, (2.23)
t=4(1).
It should be pointed out that the constants ¢, ¢,, ¢5, and ¢, can
be omitted when using (2.22) since they can always be re-
moved by applying the transformation exp{ — X(c;)
— Y(c,) — Z(c,) — W(c,)} prior to the application of
(2.22).
Finally, let us mention that the DSE’s (1.1) are also in-
variant under a group of discrete transformations, generated
by the transformations

X— —Xx, Y-, t—t, Yoy, w-w,

X—X, y- =y t-t VoY, w-w,

X—X, y-)y, t—t, Vo -V, w-ow,

X—X, y—y, t> —t, WoU* w-w.
(2.24)

Ilil. ONE- AND TWO-DIMENSIONAL SUBALGEBRAS OF
THE DAVEY-STEWARTSON SYMMETRY ALGEBRA

In order to perform symmetry reduction for the DSE’s
in a systematic manner, we need to know all subgroups of the
symmetry group having generic orbits of codimension 1 and
2 in the {x,y,t} space. This is equivalent to performing a
classification of all one- and two-dimensional subalgebras of
the DS algebra into conjugacy classes under the adjoint ac-
tion of the DS group, i.e., the group leaving the equations
invariant.

The method is exactly the same as the one employed re-
cently for the Kadomtsev—Petviashvili equation,” and is an
adaptation of methods developed earlier for classifying sub-
algebras of finite-dimensional Lie algebras.'s:1°

The first step is to classify subalgebras of the factor alge-
braS = {X(F)} in the Levi decomposition (2.8) For this we
can use results obtained earlier’ for an isomorphic algebra.
Thus every nontrivial one-dimensional subalgebra of S is con-
jugate to {X(1)} and every two-dimensional subalgebra to
aff(L,R) = {X(1),X(n}.

One-dimensional subalgebras of the entire DS algebra
will thus have the form {X(1) + Y(g) + Z(h) + W(m)},
or {Y(g) + Z(h) + W(m)}. Using the transformations
(2.16)-(2.19) we can show that every subalgebra of the first
type is conjugate to X(1).

The subalgebras of the second type split into several
classes depending on which of the functions g(¢), A(¢), and
m(t) are nonzero (in the considered ¢ interval). We drop all
details and present representatives of each conjugacy class of
one-dimensional subalgebras of the DS algebra in Table I.
The classification is under the entire DS group including the
discrete transformations (2.24).

In column 1 we introduce a name for each class of subal-
gebras. In column 2 we give the basis element for each repre-
sentative subalgebra. In column 3 we present the normalizer
of each subalgebra in the DS algebra, i.¢., the maximal subal-
gebra L, C L satisfying

[X.X,] =AX, XeL,, (3.1)

where A€R is a constant and X, is the corresponding basis
element in column 2. In column 4 we give the conditions

TABLE I. One-dimensional subalgebras of the Davey—Stewartson algebra (a>0 and A€R are constants, &, F, H, G, and L are functions of ).

Characterization
No. Basis element Normalizer of conjugacy class
L,, X)) X(n, X(1), Y(), Z(1), wW(1) f#0
L, Y(1) +aZ(1) X(@), X(1), Y( —€aH) +Z(H) f=0, h= +ag#0

Y(1), Z(1), W(L)
Ly (h) Y(1) + Z(h) — &, Y[ S5 (hH' — h'H)ds) + Z(H), f=0, g#0
h'#0 Y(1), Z(h), W(L) h#g
L,, Z(1) X(n, X(1), Y(G), Z(1), W(L) f=g=0, h£0
L, Ww(r) X(n, Y(G), Z(H), W(L) =g=’6=0,
m
L () X(F), Y(G), Z(H), W(L) f=8=h=0
m=A#
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under which a general element of the form (2.4) can be
transformed into a constant multiple of the element in col-
umn 2.

Two isomorphy classes of two-dimensional Lie algebras
{X,.X,} exist, Abelian (24,) and non-Abelian (4,), with
commutation relation

[X,X,]=0 or [X.,X,]=X,, 3.2)
respectively. To obtain all such algebras we let X, run through
all the standard forms of Table 1. The other element X, must
then lie in the normalizer nor{X,} and can be further simpli-
fied using the Lie group Nor{X,} corresponding to the alge-
bra nor{X,}.

The results are summarized in Table II. Certain redun-
dancies have been left in Tables I and II. Thus two one-
dimensional subalgebras L, ; (#,) and L | ; (h;) are conju-
gate to each other if there exist two constants A and p, such
that

hy(8) =h, (At +pu). 3.3

Similar redundancies exist in Table II and can be re-
moved, e.g., by fixing the values of the function 4 () and its
derivative at some point = ¢, Since this has no conse-
quences for symmetry reduction, we shall not dwell on it
here.

IV. SYMMETRY REDUCTION FOR THE DAVEY-
STEWARTSON EQUATIONS

We shall now use the results of the previous sections to
reduce the DSE’s to a system of equations involving two inde-
pendent variables only. To do this we make use of the one-
dimensional subalgebras of the DS algebra, listed in Table 1.
The method is standard and quite simple. We consider an
auxiliary function F(x,p,t,u,v,w) and request that it be anni-

TABLE II. Two-dimensional subalgebras of the DS algebra (a30,
beR, k =0, are constants, h, H, and m are functions of ).

No. Type Basiselement

L% 24,  X(1), Y(1) +aZ(1) + kW(1)
L%, 24, X(), Z(D) + kW(1)

L, 24, X(), w(i)

Lgt* 24,  Y(1)+aZ(1), Y( — €,ah) + Z(h) + bZ(1)
Lkm 24, Y(1) +aZ(1), Y(—€ah) + Z(h) + W(m)
[m=0 if (d%€,)#(1,—~1)]

LY 24, Y1)+ Z(h), —eY[§i(hH' —h'H)ds]| + Z(H)
h’#0

LEr, 24, Y1)+ Z(h), W(m)

h'#£0

L7, 24, Z(1), Wim)

Ly 24, W@, Wim)

Lie 4,  X(1), X(&) +kW(D)

Ly A, Y(1) +aZ(1), 2X(8)

L,,, A, Z(1), 2X(n)

L, A4, wW(ty, —X(1)

6 J. Math. Phys., Vol. 29, No. 1, January 1988

hilated by the elements of the one-dimensional subalgebra

{x}:
XF=0. (4.1

Equation (4.1) implies that Fis a function of five variables
only, namely the invariants of the Lie group generated by X.
Two invariants £ and 7 can be chosen todepend on x, y,and ¢
only, these are the new symmetry variables. The remaining
invariants yield the dependence of u, v, and w (i.e., ¥ and w)
on the symmetry variables.

Only vector fields involving derivatives with respect to
the independent variables yield reductions. Hence we shall
only use the subalgebras L, ,,...,.L,, of Table 1. We shall
perform the reduction using the “standard” basis elements
of Table 1. The result for a general vector field (2.4) is ob-
tained from the results for a simplified one by applying a
general group transformation (2.16)-(2.24).

A.The algebra L, ,

The equation X(1)F(x,y,t, u, v, w) =0 tells us that
theinvariants of exp X(1) arex, y, u, v, and w. The reduction
is hence obtained by setting

\P(xyy’t) =¢(§ﬂ?), §=xy
wxpyt) =Q(5m) .

7=y,
(4.2)

Substituting into the DSE’s (1.1) we obtain the reduced
system

bee + €1,y = €2|61°0 + 60, (4.32)

Qgg +51Q,,", =62(l¢|2).’"’ . (4.3b)

Applying a general DS group transformation to a solu-
tion of (4.3) we obtain a class of solutions of the DSFE’s,

depending on four arbitrary functions f(#), g(#), h(t), and
1(t). Thus assuming f{#) #0, we obtain

(x* + ¢ yz)‘/}‘.*

J‘elh +g2+2mfd]

W= g(Emf exp,-[i

—f(xg +€.yh) —

W= Q(&m)~

- 8f2(ﬁ”” )6+ e

ely e ’
4f2( 2f—8f)— 4f2(2hf Af')
1 &+eh’+4mf
4 f? ’
E=xf~V2 - f g [A()] > ds,

0

(4.4)

+

=y 12 —f ) [ f(s)] > ds .
(4]

Substituting (4.4) into the DSE’s (1.1) we find that ¢(£, 1)
and @(£, 7) must satisfy Eqgs. (4.3a) and

8[Qee +610,, — 8:(181%), ]
= (8,6, + D2 — (/)?], (4.5)
which reduces to (4.3b) if §, = — ¢, or if f(¢£) = (a + b2)?

[see (2.6)].
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B. The aigebra L],
Theequation [ Y(1) 4 aZ(1) ]1F = Oimplies a reduction
obtained by setting
¢(xiy’t) = Q(g;;)o
g =1, é' =) —ax.
By substituting into the DS equations we obtain the reduced
system
i + (@ + €)Q,; = 600 + 00, (4.72)
(02+51)Q;g =52(|Q|2)g; . (4.7b)
This system can be further simplified. We solve the sec-
ond equation (choosing a®# — §,):
Q5.8 = [52/((12+51)]|Q|2+a(§)§+ﬂ(§), (4.8)
where a(£) and B(£) are arbitrary functions. Expression
(4.8) can be substituted back into Eq. (4.7a) and we obtain
an equation for (£, {) alone. A transformation of the depen-

dent and independent variables can be found that takes (4.7a)
into the nonlinear Schrédinger equation. The final result is

w(x,)’,l‘) =Q(§, §), (4.6)

V(xy,t) ={e,(a® + 8,)/[€,(a* + 8,) + 8,11 ?¢(&, )
Xexpif(y —ax)F(t) + G(1)],
wx,p,t) = {5264/[62(02 + 51) + 62]}|¢(§9 1) ‘2

+a(®)(y —ax) +B(1),
F(t) = —

a(t)dt, 4.9)

Gt = — j [(@® + €,)F (1) + B() )t ,

H(t) = —2[e;(a® + €,) ]2 | F(t)dt,
a*+ 8,

€4=8 N

4= Sen &(a*+8,) + 6,

§=¢, = [e;(a® +€)] 72 (y —

€ =sgn(a® +¢,).

ax) + H(1),

Here a(t) and B(t) are arbitrary functions of time, a is a
constant, and ¢(£,n) satisfies the nonlinear Schrodinger
equation

i¢§ + ¢1m = 63€4¢i¢‘2 M (4'10)
We shall not present the more general solution, obtained
by applying a general DS group element to the solution (4.9).

C.Thealgebral,(h)
We have
[Y(1) + Z(B))F =1{3, +h 3, — (6/2)y[h’'(v 3,
—ud,)+h"3,]}F=0.

(4.11)
The characteristic system for (4.11) is
ﬁ’i_g)_’_, _ 2du _ 2dv _ 2dw L (4.12)
1 h e, yh'v e, yh'u € yh”
7 J. Math. Phys., Vol. 29, No. 1, January 1988

By solving (4.12) we obtain
¥ =¢(&, mexpli(e,/4) (h'/h)y?), £=1t, 4.13)
W=0( 1) —(e/4)(h"/h)y, n=y—h(D)x,
where the DSE's imply

ity + (s + B4y + T, + =2 g
= clgl’d + 40, (4.142)
(h*+6)0,, —f!i‘s—'h— 520|812y - (4.14b)

The system (4.14) can be further simplified. Solving
(4.14b) and substituting into (4.14a), we find

__ 6 162 + €,6, h" 2 ¢ ¢
Q= e +6,¢l 215 hn+a()n+ﬁ(),
(4.15)
hl
ibe + (€, + 0D, + ’k %,
ik &b ko )
+(2h 4(h+a)h" an—B )¢
= 2 4.16
(ez+h+6);¢%¢ (4.16)

Equation (4.16) can be reduced to a nonlinear Schrédinger
equation with variable coefficients. To see this, set

Q=AM Oexplitn®H + 7F + D],

4.17
C=y(n+K(2). ( )
We choose H(t) to satisfy a Riccati equation
] h” h’
H +4e,+hHH?+ 5% 2 " gy
! ) 4h%+68) h h
(4.18)
and the other functions in (4.17) to satisfy
F' +4(e,+h*>)HF + (h'/h)F+a =0,
G' +(6,+h*)F*+B=0,
(4.19)

A=h"V? exp[ - 2J'(¢'l +h2)Hdt],

K= —Zj(e,-}-hz)det, y=A42

The function ) in (4.17) then satisfies the equation
iQ + (6, + 1Ay,
== (62 + 62/(}1 2 -+ 81))(4 2*(1{29 .

For 5x =
(4.18) is

H=h/4h*—€)h.

(4.20)
— €, a particular solution of the Riccati equation

4.21)

D.The algebra L, ,

The algebra generated by Z(1) =4, leads in a simple
manner to the nonlinear Schridinger equation. Indeed a
straightforward reduction with = Q(x,t), w = Q(x,0)
yields
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i, +9,.=6/020+00, Q.=0 (4.22)
Putting
— i[Fx + G]
V=908 ’ (4.23)
w=a(t)x+pB(t), §=x+H(),
with
Fit)= — |a(®)dt, G() = —f(F2+ﬂ)dt,

H(t) = —2J-th,

we find that ¢(¢,£) satisfies the nonlinear Schrodinger equa-
tion (1.2).

The algebras of Table II could be used to reduce the
DSE'’s to various systems of nonlinear ordinary differential
equations. These are easy to obtain and we shall not go into
them here.

V. CONCLUSIONS

We have shown that the Davey-Stewartson equations
(1.1) have an infinite-dimensional symmetry group. More-
over, for the integrable case when §, = — €, in (1.1), the
symmetry Lie algebra has a loop algebra structure, similar to
that of all other known integrable nonlinear differential
equations in 2 4+ 1 dimensions.” '

One-dimensional subalgebras of the symmetry algebra
have been used in Sec. IV to reduce the DSE’s to one of three
two-dimensional systems. These are the system (4.3), the
nonlinear Schrodinger equation (4.10) and Eq. (4.16). Large
classes of solutions of the nonlinear Schrodinger equation are
known (solitons, multisolitons, background radiation, quasi-
periodic solutions).** The system (4.3) and Eq. (4.16) have,
to our knowledge, not been studied in the literature. They
merit a separate investigation and we plan to return to them in
the future.
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The converse problem of similarity analysis is solved in general for the finite symmetry
transformations of any inhomogeneous ordinary linear differential equation of the second
order X + f,(1)x + fi(£)x = fy(1). The eight-parameter realizations of the symmetry group
are obtained in the form .%# !4, #, where .# stands for transformations of (z,x) that depend
exclusively on the fundamental solutions of the equation, and where £, is an arbitrary
projective transformation in the plane. Thus it is shown that the full point symmetry group
corresponds to SL(3,R) indeed, without recourse to the Lie algebra. Also, a technique is
obtained for calculating the finite point symmetry realization of SL{3,R) for any given one-
dimensional linear system. Some miscellaneous examples are given.

I. INTRODUCTION

In this paper we are interested in the point symmetry
properties of one-dimensional linear systems in Newtonian
mechanics. It is our aim to give a unified treatment of the
similarity properties of such systems, in order to show that
SL(3,R) is the maximal group of point symmetry transfor-
mations for all linear inhomogeneous ordinary differential
equations of the second order, in one real dependent vari-
able.! To this end, we shall use the group elements (instead
of the Lie algebra generators') to uncover the symmetry
group. Furthermore, as a striking feature of this approach,
one obtains a technique for calculating the realization of
SL(3,R), as a group of point symmetry transformations, for
any given second-order linear differential equation in one
dimension.

In the last few years there has been considerable prog-
ress in the study of symmetries and invariants in classical
mechanics.” Different approaches to this subject are found in
contemporary literature, which start from different concepts
of what is the basic dynamical formulation for studying the
symmetries of mechanical systems in general® Thus
Noether and Lie symmetries have been distinguished,* and
Noether and non-Noether constants of motion* have been
discussed in the recent literature. As a matter of fact, the
overriding lesson seems to be that all these approaches are
equally fruitful for the theory of symmetry in dynamics.’

Interesting progress on this subject has been made in
recent years from the standpoint of continuous groups of
transformations of the equations of motion.’ It has been
found that the demand of invariance of equations of motion
yields not only the conventional conservation laws, but also
the “accidental symmetries” and the corresponding conser-
vation laws.® In particular, let us recall that the maximal Lie
group of point symmetry transformations for the simple har-
monic oscillator was identified by Wulfman and Wybourne’
as the group SL(3,R).® Wulfman and Wybourne, however,
present the space-time realization of SL(3,R) (for the case
% + o’x =0) only through its one-parameter subgroups.
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Hence their realization of the elements of the group is not
complete, because the analytic continuation of the one-pa-
rameter space-time transformations over the group mani-
fold is still missing in that work. This analytic continuation
being necessary, of course, in order to have a complete space-
time realization of the generic element of SL(3,R) with the
eight parameters included.

In a previous paper,” the problem set by the space-time
realization of the general element of SL(3,R) was revisited
for the case of the harmonic oscillator. In that paper, the
general realization of the group was calculated with the eight
parameters included; and the group was shown to be
SL(3,R), without recourse to the Lie algebra. Therefore a
synthetic method was adopted, considering SL(3,R) as a
group of space-time automorphisms that interconverts one
admissible world line of the oscillator into another. In this
manner, it can be found that the point symmetry group of
X + o®x = 0 becomes faithfully realized as the projective
group in the plane. In fact, it is well known that SL(3,R) and
the projective group in the plane are isomorphic (cf., also,
infra). The important point to remark concerning the syn-
thetic method lies in its /inear character, which rests exclu-
sively on the property that X + w?x = 0 is a linear differen-
tial equation of the second order. Indeed, in the present paper
we shall take advantage of this fact, extending the synthetic
method to study the point symmetries of any linear second-
order differential equation. In this fashion, we shall obtain
complete generalization and unification of a great amount of
work, which has been previously performed on the symme-
try properties of one-dimensional linear systems in classical
mechanics.

The organization of this paper is as follows. We first
briefly examine some features of the finite symmetry analysis
of a one-dimensional linear system (Sec. II). Then we tackle
the general converse similarity problem for one-dimensional
linear systems by means of a new approach (Sec. III), which
reveals the central role played by the projective group. In
Sec. IV, we establish the relation with SL(3,R). Finally, Sec.
V contains some examples of the formalism.
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1. SOME REMARKS ON THE FINITE POINT SYMMETRY
TRANSFORMATIONS OF ¥+ fx+fix=1y

The standard form of the linear differential equation of
the second order will be taken to be

X+ (0% + f1(0)x = fi(1), (2.1)

where all variables and functions are real. In the sequel it will
be assumed that we are working within an interval of the
independent variable, ¢, <t < t,, throughout which f; (¢) and
f>(2) [as well as f;,(2) ] are continuous one-valued functions;
i.e., there exists a unique continuous solution x = w(¢),
within £, <t < ¢,.

For our purposes we may consider the whole space-time
of the system as decomposed in continuous bands, say
{t,<t<ty 1, — 0 <x< + o}, @=12,., within each
of which the problem set by Eq. (2.1) is well posed and the
fundamental existence theorem holds.'®

Let us briefly discuss some critical features of the sym-
metry problem of Eq. (2.1). As is well known, once f;(?),
fi(8), and £,(¢) are given, the symmetry group of such an
equation is realized by a set of point transformations,

t'=T(x), x =S8(tx), (2.2)

with nonvanishing Jacobian, endowed with the property of
leaving Eq. (2.1) form invariant. Namely, the following
equivalence holds:

L(t)yx = fo(t) S L(t")x' =f(t"), (2.3)
upon the transformation of space-time variables (2.2),
where L (¢) denotes the corresponding linear operator. If one
considers the first and second extensions of these transfor-
mations (i.e., x—x' and X—X"), substitutes them into Eq.
(2.3), and separates the coefficients for the different powers
of x (as usual™'!'), one gets a system of four coupled nonlin-
ear second-order partial differential equations for 7" and S.
These equations (which we here omit, for the sake of brief-
ness, cf., for instance, Ref. 9) are the starting point in the
similarity analysis of finite point transformations of a linear
second-order differential equation like (2.1). In each con-
crete instance, that is, when £, (), f,(¢), and £,(¢) are given
functions, the general solution of such nonlinear system for
T and S affords a realization of a Lie group having no more
than eight essential parameters.'? These parameters may be
adjusted by means of the integration constants and a set of
admissible “initial conditions” introduced at a fixed ordi-
nary event (#,,x,). In this fashion one gets a reasonable para-
metrization of the point transformation group. (This finite
similarity method was used successfully in our previous pa-
per,” for the equation % + w?x = 0.)

Itis clear that for the case of the general linear equation
(2.1) the familar similarity methods are completely useless
because further analysis of the nonlinear equations for 7"and
S (or of the linearized infinitesimal version thereof!!) would
require the knowledge of £, (#), f1(2), and f,(¢). Since in this
paper we are interested in the symmetry properties of the
whole class of differential equations of the kind (2.1), in-
stead of a specific member of this class, the problem must be
faced ab initio under a different perspective, and recourse to
techniques that differ from the usual tools of similarity anal-
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ysis of differential equations™'! seems to be unavoidable in
this case.

I1l. THE PROJECTIVE GROUP IN THE (7, x) PLANE

The main ideas of our approach follow. In the theory of
the second-order linear differential equation (2.1) one ex-
tracts as many properties of the solution as possible by con-
sidering some changes of the dependent (or the indepen-
dent) variable, which reduce the number of essentially
distinct types of equations. A well known example is the
substitution

y(t) =x(2) exp[%f dt'fz(t’)] (3.1)
that transforms Eq. (2.1) into
5+ [ A0 = A - AOF]

=/fo(?) exp[—;—f dt’fz(t’)} . (3.2)

Another example is the Liouville transformation (of the in-
dependent variable), which somehow inverts the tranforma-
tion above. In the technique of changing the form of a differ-
ential equation into another, care must be exercised in verify-
ing the one-to-one nature of the transformation of variables.
However, one does not need the luxury of an explicit repre-
sentation of the solution x = w(¢) in terms of fo(t), f1(2),
and f,(¢), wherefrom the power of this technique stems."* In
the same spirit, in order to study the symmetry properties of
Eq. (2.1) we shall begin by reducing its form to the simplest
one.

First, let us settle our notation. Henceforth, »,(¢) and
u,(t) are two given linearly independent solutions of the
corresponding homogeneous equation, i.e.,

L(t)u;(t) =0, (3.3)
forj = 1,2, with
U, ()u,(t) — u, (1)a,(2) #0. (3.4)

We shall write up (¢) to denote a particular solution of Eq.
(2.1). Hence for the complete primitive of the inhomogen-
eous equation (2.1), we write

x =w(t) =au,(t) + Pu,(t) + up(t),

where a and B are two arbitrary real constants.

We next introduce the following lemmas.

Lemma I Within those subintervals of ¢, < f < ¢, where
u,(t) #0, one has

(o + () -
(5 - (afes) -

Here we have written ( f)°, instead of f, for convenience.
The reader can prove Lemma I rather easily.
Lemma II: The definition of new variables,

t=7(t):=u (8)/u(t), X=[x—up(t)1/uy(e)
(3.8)

3.5)

3.6)

and

3.7
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(within its domain of validity), entails a local transforma-
tion of space-time coordinates
Indeed, the Jacobian of Eq. (3.8) is given by

a(i,x) _ ﬁl(t)uz(t) - u](t)flz(t)
= 3 #0,
a(t,x) (u2(2))

and the corresponding inverse transformation is of the gen-
eral form

(3.9)

t=7"1(1), x=ADHx+ B, (3.10)
where, clearly,

- ()

77 (D): 7 . ,

A :=u,lr™ (D)), B@):=up(r~ (D). (3.11)

Next, we take advantage of these rather simple facts,
and we assert the following theorems.

Theorem I: The local transformation of space-time co-
ordinates, stated in Eq. (3.8), transforms the equation of
motion

X+ L)% + f1(t)x —fo(£) =0
into

(3.12)

(3.13)

x =0,

where % = d&/d? and % = d%/d:.
Proof: In fact, the first and second extensions of the
transformation (3.8) are given by

() (52)
()52 () )

(3.15)

(3.14)

respectively. Therefore, in particular, “on the world lines”
x =w(t) as a consequence of Lemma I, Eq. (3.15) yields
(3.13). This ends the proof.

Theorem II: The inverse local transformation of space-
time coordinates, defined in Egs. (3.10) and (3.11), changes
the differential equation (3.13) into (3.12).

The proof of this theorem is straightforward (albeit
rather lengthy). We shall briefly refer to transformation
(3.8) asa F transformation. Of course, since both solutions,
u,(¢) and u,(?), are on the same footing, it is clear that simi-
lar results hold for a (u,/u,) transformation scheme in those
subintervals of ¢, <t <t, where u,(t) #0, mutatis mutandi.
Hence one may cover any continuous space-time band witha
set of overlapping % transformations producing a set of
overlapping (2, ) coordinate patches, as the case may be.

These are far-reaching results, for it is immediate that
they bring to the fore the projective group of the plane as
playing an outstanding role in the description of the point
symmetry properties of a linear second-order differential
equation like (2.1). Let us discuss this subject rather briefly.
Having performed the local .# transformation, if one next
performs a projective transformation, #,(q):

11 J. Math. Phys., Vol. 29, No. 1, January 1988

X = *u (1) + ¢%u (1) + @x — up (1))

q
(?, -i) - (? 'j’), say,

AR Y s P K 2 i

- ] 9 3.16
g+ g% + 1 gt +¢% + 1 10

one certainly obtains
i=0=%=0. (3.17)

Hence if one finally performs the inverse transformation,
F~L(1'%)-(t'x'),asin Egs. (3.10) and (3.11), i.e.,

t'=7"12"), xX'=A@)¥ +B(1"), (3.18)

[with (2’,%') as given in Eq. (3.16)] according to Theorem
I1, one certainly gets

=0+ +£,0)x —fo(t') =0.  (3.19)
Thus the transformation
q
FP,PF: (tx)-(t'x") (3.20)

gives us the space-time realization of the full point symmetry
group of a one-dimensional linear Newtonian system. Since
the # transformations do not form a Lie group, and since,
clearly,

(*7_1@2(4')37)(*7_1@2(4)?)
=7 NZ,(@) 2 ()F

=F'2,e(¢:9)F , (3.21)

whereg® (¢';q) = ¢"° a = 1,...,8, denotes the binary compo-
sition law of the parameters of the projective group, we have
shown the following theorem.

Theorem III: The full point symmetry group of Eq.
(2.1) corresponds to those space-time realizations of the
projective group in plane (Z?,) which are of the form
FIP,F.

To end this section, let us epitomize and exhibit the
eight-parameter transformations (t,x)i(t’,x’) that keep
invariant the equation of motion of a one-dimensional linear
system. After substitution from Egs. (3.8) into (3.16), we
obtain
o) _ 40 +@un() + g — up ()

u(t')  qui(1) 4+ ¢%x — up (1) + uy(2)

(3.22)

g XU g + 40 + Pl —up(1)

u(t') quy (1) + ¥ x —up () + uy(2)

In this way, using Eqgs. (3.18) [cf. also Egs. (3.11)], one gets
the final answer,

t = T-l(q‘ulm +¢°u,(1) +¢x — u,,(t)))
q'u (1) + ¢%(x — up (1)) + u,(2)

q'u, (1) + @ x —up (D)) + uy(8) (3.23)

X(T_l(qlul(t) + guy (1) + ¢°x — “p(’))))
q'uy (1) + ¢¥x — up (1)) + u,(2)

M. Aguirre and J. Krause 11



tu (T—1<q‘u1(t) + Gu(t) + ¢ — up (t))))
d Q' u (1) + @¥x — up(2)) + uy(2) '

One can easily check the identity in Eqs. (3.23) against the
identity in Eqgs. (3.16); i.c., one sets ¢'=¢° =1, and
@ =¢*=q¢*=¢°=4q" = ¢*=0. Furthermore, one ob-
serves that using a (u,/u,) scheme for the # transforma-
tions, instead of the (u,/u,) scheme used in this paper, is
tantamount to a trivial reparametrization of the projective
group (as it should be).

It must be borne in mind that, according to Eq. (3.21),
the transformations of space-time coordinates stated in Egs.
(3.23) carry a faithful realization of the eight-parameter
group Z ,, within their domain of definition. Hence we have
shown the following theorem.

Theorem IV: The full point symmetry group of Eq.
(2.1) is isomorphic with the projective group Z,.

IV. SL(3,A)

We are in position to discuss the issue of SL(3,R) in
connection with the symmetry properties of the general lin-
ear equation of motion (2.1). To this end, we follow the
same arguments used in Ref. 9, which rest exclusively in the
linear character of the differential equation.

Let us handle the transformations (3.22) in a *“com-
pact” fashion. Therefore we write

u, (t')/u,(t")
[ —up(t'))/u(t")

1
¢ ¢ ¢ u; (£)/u,(1)
=dl¢* ¢ ¢CYlx—u®]/n0], (4.1)
g ¢ 1 1
where
—up()\ !
={1+ 7 4,(2) + g X —Up ) . (4.2)
¢ ( 7 u,(1) 7 u,(1)
We then rewrite Eq. (4.1) symbolically, to read
v =¢(v;g)M(q)+, (4.3)

which meaning is clear. Let us observe that this last equation
may be written also in the form

v =M(q)v/(M(q)*);, (4.4)
where (M(q)+v); stands for the third row in M(g)+v. Equa-
tion (4.4) shows neatly the projective nature of the transfor-
mation (4.1).

Next, we need the Jacobian J = d(¢',x')/d(t,x) of Eqgs.
(3.23). A straightforward calculation yields

- (2 ) (U, (£) /U, () &
uy (1) (u, (") /us(t )y
In consequence, upon performing two successive transfor-
mations, we require that
v =¢"M"v =¢'¢M"-M-v (4.6)

holds for every column v = (u,/u,,(x — up)/u,1) (iran-
sposed), as this is a necessary consequence of the group

det(M(q)). (4.5)
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property of these transformations. Of course, in Eq. (4.6) we
have written ¢’ = ¢(v';q’), ¢" = #(v;q”), M’ = M(q'), and
M"” = M(q"), where, clearly, ¢"* = g°(¢';q), a = 1,...,8, as
one obtains from the projective group [cf. Eq. (3.22)]. Since
J" =J'J, Eq. (4.5) yields immediately

¢"> det(M") = (¢'¢)* det(M’)det(M); (4.7)
i.e., the expression
(¢"/4'$)* = det(M'*M)/det(M") (4.8)

isa function of ¢' and ¢ only, for it does not depend on the v’s.
Hence from Eq. (4.6) one readily gets

M M’ M

(det(Mn))IIB = (det(M;))I/B * (det(M))”3 ’ (49)
or, more explicitly,
Mig(g';9))
(det{M(g(q’;¢))1'"?
M(gq") M(q) (4.10)

" @etdM(@) )" [delM(9) )"

where, obviously, these eight-parameter matrices are ele-
ments of SL(3,R),

M(q)

(det{M(g)})"/?
This result exhibits the fact that every elementin ¥ ~'Z, %
corresponds to an element in SL(3,R), and that the group
law for the binary combination of the elements in
F 1P ,F is the same as in SL(3,R) [i.e.,, g(¢';9) =¢q"}].

This is a rather natural result indeed, since the groups
%, and SL(3,R) are isomorphic: &, is a realization of
SL(3,R) and SL(3,R) is a representation of Z,. In fact, if
one writes the generic element of the projective transforma-
tion (3.16) in the form of Eq. (4.1), namely,

eSL(3,R) . (4.11)

[ ¢ ¢ oI\/[1
Fl=@t+¢%+1)7 g ¢ ¢¢||x],  (412)
1 g ¢ 1/\1
since the Jacobian of (3.16) is given by

aE'x)

—I = (q"t+ ¢%% + 1) "3 det(M(q)), (4.13)

a(1,x)

itis clear that, if one follows the same argumentation used in
connection with Eqgs. (4.1) and (4.5), one will equally arrive
at Eq. (4.10) [as it must be, for Eq. (4.12) is a special in-
stance of Eq. (4.1)]. Hence to every element of &, there
corresponds one (and only one) well defined 3 X 3 unimodu-
lar matrix [cf. Eq. (4.11)]. Moreover, the group law of Z,
is the same as the group law of these image matrices. Thus
Z, is a subgroup of SL(3,R). Conversely, it can be shown
(though the proof is much more involved) that every 3x3
unimodular real matrix yields a unique triplet of equivalent
projective transformations (TEPT) and that this mapping
preserves the group law. Moreover, the ordered TEPT’s con-
stitute a group that is isomorphic with #,. (See the Appen-
dix for a sketchy proof of these features.) Thus SL(3,R) isa
subgroup of #,. Hence both groups are isomorphic, and
SL(3,R) is the full point symmetry group of all conceivable
one-dimensional linear Newtonian systems.
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V. SOME MISCELLANEOUS EXAMPLES

Interestingly enough, from the standpoints of mechan-
ics and applied mathematics, Eqs. (3.23) afford an effective
tool for the construction of the full point symmetry transfor-
mations of any given linear ordinary second-order differen-
tial equation. In this section we present some interesting in-
stances, taken from elementary mechanics and analysis.

(a) Freeparticle. This is a trivial check of the formalism.
We have ¥ =0; i.e., we take u,(2) =¢, u,(¢) = 1, while,
clearly u, (¢) = 0. Hence Eqgs. (3.22) and (3.23) yield im-
mediately the projective transformation, as it must be

(b) Free falling particle. Now we set X + g = 0. Thus we

have, for instance, u,(t)=1t u(¢)=1, and
up(t) = — Jgr?, wherefrom we easily obtain the transfor-
mation

t,=q‘t+q2(X+§gt2)+q3
g+ (x+1gt?) + 1

o2t x+1gt?) +¢°

1+ (x+4gt?) +1 G-

__l_g(q't +q(x+14g1%) + q’)’ .
2°\gt+ ¢ (x+igt?) + 1

The reader can check Eq. (5.1) against the fundamental re-
quirement: X + g = 03X’ + g = 0. Let us observe that any
other admissible choice for the #’s corresponds merely to a
reparametrization of the projective group. This is a general
rule of this approach.

(c) Simple harmonic oscillator. We quickly obtain the
space-time point symmetries of ¥ + w*x = 0. Let us take
u,(t) = sin wt, u,(t) = cos wt, up (t) = 0. Then, from Egs.
(3.22) and (3.23), after some elementary manipulations,
one gets

q* sin wt + ¢°x + ¢° cos wt

q'sinwt + ¢*x + ¢ cosa)t) =

t'=iarctan( — =
q' sinwt + ¢ x + cos wt

@

"~ ((g" sin wt + g’x + ¢° cos w1)? + (¢’ sin ot + ¢°x + cos w1)?)/2

(5.2)

This transformation of variables is equivalent to the transformation obtained in Paper 1, within a suitable reparametrization of
the group. However, the connection of the formulas presented in that paper with the projective group is not as transparent as

in Egs. (5.2).

(d) A forced harmonic oscillator. Let us consider the inhomogeneous equation of motion

t'=

% + &’ = fy sin 4, (5.3)
where f;, is a constant. We take u,(#) = sin of, u,(¢) = cos o, as before, and use
up(t) = — [ fo/(Q* — @?)]sin Q. (5.4)
Hence from Egs. (3.22) and (3.23) one obtains the following rather formidable transformation of variables:
1 (q’ sin ot + g*(x —up (1)) + ¢° coswt)
-— arctan - ,
® q’ sinwt + ¢%x — up (1)) + cos wt
4 sin wt —up(t 8 cos wt
g'sin ot + ¢x —up(1)) +¢° cosw (5.5)

'

((¢* sin ot + g*(x — up (1)) + ¢° cos wt)* + (g sin wt + ¢8(x — up (1)) + cos wt)?)"/?

0% — o? )

L (Q (q‘ sin ot + g3 x — up(t)) + ¢° coswt))
sin| — arctan - ,
g’ sin ot + ¢%(x — up(t)) + cos wt

which leaves invariant Eq. (5.3). Of course, it is very tedious to check this fact with the eight parameters included. However,
the reader can test Eqs. (5.5) against the symmetries of (5.3) by considering at least the transformations that belong to the

one-parameter subgroups.

(e) Damped harmonic oscillator. We consider the equation of motion ¥ + 24x 4 w?x =0, with u,(#) =e~* sin O,
uy(t) = e~ * cos Qt, where Q = Jo? — 12, and u, (¢) = 0. Hence after a straightforward calculation we get the point sym-

metry transformations of this equation; i.e.,

1. 2 t 3
R tan(q sin Q¢ + ¢°xé* + ¢ cosﬂt)’
Q g’ sin Q¢ + ¢g®xe™* + cos Q¢

, q* sin Qt 4 g°xe*' 4 ¢° cos it

x = :
((g" sin Q + g°xe™ + ¢° cos D) + (g7 sin Q1 + ¢°xe* + cos Qr)?)!/?
q" sin Q¢ + ¢°xe** + ¢° cos Ot

5 e
Xexp|l — — arctan
p( [4) q’ sin Q¢ + ¢®xe* + cos Ot

(5.6)

)

(f) Falling particle in a viscous media. Now, let the equation be ¥ + Ax = —g. We take u,(#) =e ™%, u,(1) =1,
up(t) = — (g/A)t. Therefore we obtain the following symmetry transformation of variables for this equation of motion:
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1 n(q‘e“‘ + @+ (/) + q-’*)

P
A \gle 4+ g¥x+ (g/A)t)+ 1

e+ Pl + (g/A4)t) +¢° L8 ln(q‘e"“ + ¢°(x + (g/A)t) + q3) ‘

ge M+ gfx+ (g/A))+1  A?

(g) Symmetries of ¥+t ~'x—t ~%*=0. Finally, wealso
consider one example of a linear differential equation with
time-dependent coefficients. Although not very interesting
from the point of view of mechanics, for the sake of simpli-
city let us consider the following:

i+ (/D% — (1/t)x =0,

which has a regular singular pointat t = 0. Weset u,{t) =1,
u,(¢) =t ', and up () = 0. Thus one readily obtains

t'= (q‘t’+qztx +q3)"2
gt g+ 1
v ¢t + ¢+ ¢°
((q'ItZ +q8tx -+ 1)(qlt2+q2tx +q3))1f2’

for the realization of the full point symmetry group of Eq.
(5.8).

In all these examples one can find very easily the corre-
sponding realizations of the Lie algebra of SL(3,R) by con-
sidering the monoparametric transformations of variables to
the first order of approximation in the parameter one han-
dles. In a forthcoming paper we shall discuss the general Lie
algebra of the symmetry group of Eq. (2.1) by means of the
formalism introduced in the present paper.

Work is in progress concerning SL(3,R) quantum kine-
matics and the geometric quantization of linear Newtonian
systems in two-dimensional space-time, according to the
general results obtained in this paper.'*
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APPENDIX

Here we append the proof that SL(3,R) is a faithful
representation of &, and, hence, that both groups are iso-
morphic. For the sake of briefness, we shall discuss this sub-
ject in a rather sketchy way.

One has the following mapping of GL(3,R) onto
SL(3,R) [cf. Eq. (4.11)]:

MeGL(3,R) = M/(det(M))'/>eSL(3,R) . (A1)
Hence one shows rather easily that a necessary and sufficient
condition for two elements of GL(3,R) to yield the same
element of SL(3,R) is that they be linearly dependent.

On the other hand, it is clear that, in general, every ele-
ment MeGL(3,R) affords three projective transformations
in two-dimensional projective space, say,
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(5.7)
gle M+ g%x + (g/A)t) + 1
r
x M5 M(x/2) + Mp(3/2) + M)
z B M 1(M3l(x/z) + M, /2))+ 1 (A2)
2’_:__ M 1(1‘121(5"3/2) + M,,(y/z) + My,)
7 My My (x/2) + May(3/2)) + 1
(5.8) 2 M5 \My(2/y) + M (x/p) + M)
Y M5 \My(2/y) + My (x/9)) + 1 (A3
X M3 \(My(2/y) + My (x/y) + My,
Y Mg \\My(2/y) + My (x/9)) + 1
y _M; Moy (p/x) + My (2/x) + M)
(5.9 X MG Myu(/x) + Miy(z/x)) + 1 (A%
E:_ B M lU"Iziz()’/x) + M3 (z/x) + M;,)
XM \Murx) + M(2/%) + 1

where x; =M, x,. [The special cases, when M, =0,
M, =0, or M,; =0, correspond to holonomic constraints
which reduce the number of parameters of GL(3,R); thus
one can disregard these loci without loss of generality. ] Fur-
thermore, it is immediate that the rule of combination of
these induced projective transformations preserves the
group law of GL(3,R). Of course, the three projective trans-
formations induced by MeGL(3,R) are not independent.
(This feature will be discussed presently.) Now it can be
shown that the necessary and sufficient condition for two
elements of GL(3,R) to induce the same triplet of projective
transformations is that they are linearly dependent. There-
fore, the important conclusion follows: every element of
SL(3,R) induces one, and only one, triplet of projective trans-
Sformations.

We next consider the following mapping of the two-di-
mensional projective space {(a,5)} onto itself:

(a,B)* = (1/B,a/B), (AS5)
ie.,

(aB)** = (1/B,a/B)* = (B/a,l/a), (A6)

(a,B)*** = (B/a,1/a)* = (a,B). (A7)

Obviously, the sets {(a,8)}, {(a,8)*}, and {(a,8)**} are
equivalent systems of homogeneous coordinates in projec-
tive space [i.e., Eq. (AS5) is just a transformation of coordi-
nates]. Then, let P(p) denote a projective transformation,
with parameters p = (p,,...,pg); namely,

P(P): a' — pla +P2ﬁ+P3 ,
pa+psB+1
g = P2t PsBtPs
pa+psB+1
We shall say that three projective transformations,
P(p)(aB), P(p*)(a,p)*, and P(p**)(a,B)**, form a trip-
let of equivalent projective transformations (TEPT) if they
preserve the (*) mapping for the transformed coordinates.

(A8)
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Of course, the three elements in a TEPT are not inde-
pendent. Indeed, a straightforward calculation yields

pr=ps', pr=p.ps", pY=psps’', Pr=psps’,
Pr=p,ps"s PE=p,ps', PF=peps ', PE=pups’,
(A9)
and
P =pspi', P =pspi's P =ppi ',
™ =pypi ', PY=pi' P¥*=p;p
P =ppi ', p¥t=ppi’,
for the parameters of P* = P(p*) and P** = P(p**), re-

spectively. One observes that p** = (p*)* and p*** = p, as
it should be; i.e., it follows that

1

(A10)

Ptt=(P*)*, (All)

P*## =P (A12)
Also

P*=PSp=ps=1, py=ps=pPr» P3=Ps=Ps

(A13)

Moreover, one has

(P'P)*=P'*P*, (Al4)

(P~ H*= (P, (A15)

I=I*=]** (A16)
(where I stands for the identity in #,), and

P*=P*&P' =P (A17)

Therefore the mapping P— P * is an automorphism of Z,.

Every element of &, belongs to one TEPT. However,
all three members of a TEPT appear on an equal footing, so
that any member of the TEPT can be taken as the representa-
tive that labels the triplet and from which the TEPT can be
constructed. Thus one can take the first member to this end,
and write

T(P) = (P,P*P**), (A18)
while considering the TEPT’s as an ordered triplets. In fact,
it can be shown that in this way (and only in this way) the
following TEPT product:

T(P'YT(P)=T(P'P) (A19)

is unambiguous. So one establishes an isomorphism between
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the group of ordered TEPT’s and & ,. (The set of unordered
TEPT’s do not constitute a group, because their product
would be ambiguous. ) This argument becomes strengthened
if one observes that one has a homomorphism of 2, onto
{TEPT} whose kernel is {7} [cf. Eq. (A16)].

Finally, a glance at Eqs. (A2)-(A4) shows that the
three projective transformations associated with an element
of GL(3,R) constitute a TEPT. Hence, every element of
SL(3,R) corresponds to one, and only one, TEPT; and
therefore, according to the previous argument, SL(3,R) car-
ries a faithful representation of Z,. Namely, both groups are
isomorphic. This ends the proof.
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The algebraic structure of parastatistics has been generalized and it is found to be consistent
with supersymmetric quantum mechanics with supercharges constructed out of the generalized
para-Bose and para-Fermi operators. It is further shown that the operator algebra of
generalized parastatistics offers a realization of the (graded) orthosymplectic group similar to
that of orthogonal and symplectic groups using conventional parastatistics.

I. INTRODUCTION

It is well known that supersymmetry expresses an invar-
iance of the Lagrangian under simultaneous transformation
of bosons and fermions, when the bosons and fermions obey
canonical Bose and Fermi quantization rules. In supersym-
metric quantum mechanics' if H is the Hamiltonian of the
system and Q and Q' are the supercharge and its Hermitian
conjugate, then the supersymmetry generates the well-
known graded algebra, namely,

In the present paper we would like to address ourselves to the
question of whether the supersymmetric quantum mechan-
ics described by the graded Lie algebra (1.1) is consistent
with the situation where the fermions and bosons obey the
quantization rules according to parastatistics” instead of ca-
nonical Fermi and Bose statistics. In Sec. I we discuss this
and show that the consistency of (1.1) with parastatistics
requires additional algebraic relations between para-Fermi
and para-Bose generators not present in the standard
Green’s result, but nevertheless quite consistent with ca-
nonical Fermi and Bose quantum conditions. We write
down the complete algebraic structure leading to general-
ized parastatistics. To find the additional significance of
these new relations we have discussed in the remaining sec-
tions the operator realizations of the classical graded Lie
algebra based on the operators obeying generalized parasta-
tistics. Sections III-V have been added for the sake of com-
pleteness. In Sec. III we review the constructions of the uni-
tary algebras based on conventional Fermi and Bose
operators and mention the salient points of parastatistics. In
this connection, we may mention the work of Bracken and
Green® who construct all the SU(3) multiplets with para-
Fermi field operators of order 3. In Secs. IV and V we make
use of the complete set of fundamental relations of parasta-
tistics and show their consistency with operator realizations
of orthogonal and symplectic algebras (which contain uni-
tary algebras as their subalgebras). Long ago, Ryan and Su-
darshan* had established a very direct connection between
parafermion and paraboson algebras with those of the Lie
algebras of orthogonal and symplectic groups, respectively.
The special case of O(3) was discussed in detail by Jordan et
al® Finally in Sec. VI we generalize our observations to
(graded unitary and orthosymplectic types of) classical
graded Lie algebras by showing that their operator realiza-
tions are entirely consistent with generalized parastatistics.
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Il. THE FUNDAMENTAL RELATIONS OF GENERALIZED
PARASTATISTICS

In this section we shall give the algebraic structure of
generalized parastatistics. We shall motivate this by observ-
ing the consistency between this structure and that of super-
symmetric quantum mechanics. The fandamental relations
of generalized parastatistics are at one glance

[bas[6):8,]1] = 28445, (2.1a)
[a:.{a},a,}] = 28,44, (2.1b)
[ba.{ala;}] = [a;,[b1.65]] =0, (2.1c)
[a:,{b].,a;}] = {b,.{a],bs}} =0, (2.1d)

[a.,{b,.a]}] =26,b,, (b.{b}.a,}}=25,4a,.

(2.1e)
[bzl’[bﬁ’b‘r]] =25aﬂby —Zaaybﬂ’ (2.2a)
[a}"{aj’ak}] = —26;a;, —2,a;, (2.2b)

[a}{a;,b,}] = —28,b,, {b}.{a;bs}}=26,,a,

(2.2¢)
[6%.{a;0,}] =0, (2.2d)
[al{b,,85}] =0. (2.2¢)
[ba:[bg:0,]] =0, (2.32)
[a:,{a,8,}] =0, (2.3b)
{b,.{bs,a,}} = [a;,{bg,a,}] =0, (2.3¢)
[ba.{a;,a;}] = [a:,[basbs]] =O. (2.3d)

Here b, (a = 1,2,...,M) and their conjugates b}, are para-
Fermi operators, and a; (i = 1,2,...,N) and their conjugates
a] are para-Bose operators. The above relations are fully con-
sistent with the Fermi-Bose interpretation of b, and g,.
Note that though the relations (2.3) are independent of
(2.1), the relations (2.2) can all be derived from the set
(2.1) through generalized Jacobi identities.

The unmixed relations among b’s [ (2.1a), (2.2a), and
(2.3a) ] constitute the fundamental relations of para-Fermi
statistics. Similarly the unmixed relations among a’s
[(2.1b), (2.2b), and (2.3b)] constitute the complete set of
fundamental relations of para-Bose statistics. It is the re-
maining mixed ones among a’s and b’s that are new to the
parastatistics we are considering in this work. Toward the
end of this section we shall show that the fundamental rela-
tions of para-Fermi and para-Bose statistics arise from the
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“odd” and “‘even” sectors, whereas the remaining ones con-
stitute their extension. First, however, we consider the fol-
lowing toy model of supersymmetric quantum mechanics in
order to motivate the relations (2.1).

For simplicity let @ and b be single para-Bose and para-
Fermi operators, respectively. The fundamental relations
among them and their conjugates are a special case of (2.1),
(2.2), and (2.3), M = N = 1. Define the supergenerators as
given by

0 =Ha' b}, (2.42)

ot =4{b%.a}, (2.4b)
and the even generators as given by

H={a"a}+}i[6"b]. (2.5)

Using the above definitions of Q and @, which are con-
structed out of para-Bose and para-Fermi operators, it is
easy to compute the brackets {Q,07}, [Q,H], and {Q,0}
and verify the algebraic structure (1.1) of supersymmetric
quantum mechanics on using the identities given below and
the fundamental relations (2.1a)—(2.1e). These identities,
which hold for arbitrary operators §2,, Q,, 25, and Q,, are

({01’92}3{93’94}} = {Ql’{ﬂb{ﬂi«l:ntt}}}

+ [9,,[2,,{Q,,0,}1], (2.6a)
[{2,0,1,10:,0,]] = {2,,[Q,,[2:,2,]1}

+{0,,[92, (2,011}, (2.6b)
[{0,9,1,{0,,0,}] = {Q,[2,,{02,,0,}]

+{0,,[9,{0,2.}1},  (2.6¢)
[[2,90,,1,[95,2,]] = [2,[Q,,[Q3,Q,]]]

— [Q,[9,[925,9,]1]].  (2.6d)

The full significance of the generalized supplementary rela-
tions (2.3), which are not required in the above derivation,
emerges in the last section.

Before closing this section, let us dwell more on the gen-
eralization of the (unmixed) relations of ordinary parasta-
tistics. Let (a,,b, ) be denoted collectively by a;, (a;,b5) by
a,, etc., where I = (i,a), J = (j8), etc., run over M + N
values. To distinguish @ from b we introduce the odd/even
“parity” ( — 1)™? associated with @ which equals — 1 for
the b-type operator and equals -+ 1 for the a-type operator.
Using this notation, (2.1)—(2.3) are compactly summarized
to our advantage as

[a;.{af.ax)] . =280k, (2.7a)
[aI’<aJ’aK>] s = —2(— l)n(l)n(l)‘suax
—_ 2( — l)ﬂ(K)(l'l(J) + l'l(I))(SIKaJ’
(2.7b)
[ax.(ar.au)] . =0. (2.7¢)

Here [ , 1, denotes the generalized Lie bracket, e.g.,
[@8,] . =a,8, — (— 1)IONDg g

and ( , ) denotes the (anti-) symmetrized product, e.g.,
(a,,a;) =aa;, + (— 1)"P"0q,q,.

These relations are all fully consistent with the canonical
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relations, which in our compact notation read
[a,,a}] L=—(- 1)"“’"‘”[0},0,] . =6

[ara;] . =0.

(2.8a)
(2.8b)

The identities (2.6) can also be summed up into a single
identity, which we would rather omit. The compact notation
brings out clearly the “even’ and “odd” sectors consisting of
parabosons and parafermions. The fundamental relations
that connect these two sectors are new to generalized para-
statistics. In order to shed more light on them, we now turn
to operator realizations of (graded) Lie algebras systemati-
cally.

Il. OPERATOR REALIZATIONS OF THE UNITARY
ALGEBRAS?

Operator realizations of the unitary algebras, using con-
ventional Fermi/Bose-type of operators, are well known.
The commutation relations are

[Eij’EkI] = 5jkEﬂ - 5i1Ekj- (3.1)

Here i, j,k,l = 1,2,...,N. Let us introduce N Fermi/Bose op-
erators b /a and their adjoints, which enjoy the fundamental
relations

{b ;_T,bj} = 5,’1; {b,-,bj} =0, (3.2a)
[a:,a]]1 =6, [aia] =0, (3.20)
and the corresponding adjoint ones. Then the algebraic

structure (3.1) is realized through the N ?bilinear constructs
given by

E, =blb,/dla;.

We observe that (3.1) is also tenable with the parafer-
mionic/parabosonic interpretation of b, /a; and b [/a. The
kind of fundamental relations of para-Fermi/para-Bose sta-
tistics we require to verify this claim are (2.1a) and (2.1b),
ie.,

[b;:[64:6:]1] = 28,bs, (3.32)
[aji{azyal}] = 26jka1, (3.3b)
and the related adjoint ones. The commutation rules (3.1)

follow directly if we identify E;; with antisymmetrized/sym-
metrized bilinear constructs:

E; =1[b].,1/{a},a;}.
Hence the consistency of the structure (3.1) with parastatis-
tics. In this derivation based on the fundamental relations of
parastatistics it is convenient to use the identities (2.6c) and
(2.6d). Note that we have only shown that (3.1) is consis-
tent with the fundamental relations of parastatistics given by
(3.3a)/(3.3b), which in turn are also consistent with
(3.2a)/(3.2b) of ordinary statistics. But there are additional
fundamental relations of parastatistics that, though they
have not been used in arriving at the algebraic relations
(3.1), are nonetheless consistent with (3.2a)/(3.2b) of or-
dinary statistics. Of these new relations, the ones that follow
from (3.3a)/(3.3b) through generalized Jacobi identities
are (2.2a) and (2.2b), i.e.,
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[b }t’[bf’bj} ] =28ub; — 26,4b), (3.4a)
[al’{al’aj}] = ~2Wa; — 254, (3.4b)

together with the adjoint ones. The remaining ones are the
famous supplementary fundamental relations (2.3a) and
(2.3b), i.e,

[xs[61:5,1]1 =0, (3.5a)
[ar.{a,.a}] =0, (3.5b)

and their adjoint relations. In Secs. IV and V, we make use of
the complete set of fundamental relations, {(3.3a), (3.4a),
and (3.5a) 1/[(3.3b), (3.4b), and (3.5b) ], to show the con-
sistency of operator realizations of orthogonal/symplectic
algebras (which contain unitary algebras as their subalge-
bras) with parastatistics.

V. PARA-FERMI STATISTICS AND OPERATOR
REALIZATIONS OF ORTHOGONAL ALGEBRAS%®

According to the Cartan classification of Lie algebras,
the orthogonal algebras SO(2N + 1) and SO(2N) are de-
noted by By and Dy, respectively. Given a Lie algebra of
rank N, there are exactly N generators H, H,,....Hy that
span its Cartan subalgebra. Since they all commute, they are
chosen simultaneously diagonal in any linear representation
of the algebra. The nth diagonal entry in H, is the ith compo-
nent of the weight associated with a given vector |n) in the
linear vector space of any representation. The adjoint repre-
sentation is of special importance because the D — N distinct
nonzero weights associated with it are the roots of the alge-
bra whose order is D. For orthogonal algebras By and Dy of
order (2N + 1)Nand N(2N — 1), respectively, all the roots
are conveniently enumerated in terms of N orthonormal vec-
tors

€1,€3,--48x
spanning N-dimensional Euclidean space. They are

BN: :tei iep ieis

Dy: te +e, i>j=12,.,N.

Each root a (components a,,@,,....&ty ) is associated
with a ladder operator denoted by £(cr). This is like a raising
(lowering) operator, if a is a positive (negative) root. We
now give the operator realizations for E(a), for every root a.

With their help we derive the algebraic structure of a classi-
cal Lie algebra in its canonical form:

N
[E(a),E(—a)] = Z aH,

(4.1a)

iw=]
[Hi,E(a)] = a,E(a), (4.1b)
[E(a),E(B)] = NgE(a +B). (4.1¢)

Here N,z is a c number that vanishesif @ + Sis not a root of
the algebra. In the derivation of this canonical structure for
orthogonal algebras, we might in the spirit of Sec. III start
with the operators obeying Fermi statistics and then note the
consistency of our derivation with para-Fermi statistics.
However, in this section we prefer to work directly with
para-Fermi operators

bth)'“’bN!
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and their adjoints which enjoy the fundamental relations
(3.3a), (3.4a), and (3.5a).

We associate the ladder operators E( 4-¢; + ¢;) corre-
sponding to + e; + ¢; with the following antisymmetrized
bilinear constructs:

E(+e +¢)=(i/2)[b]b]],

E(—e —e¢)=1(i/2)[b;,b;],

E(+e —e)=4[blb)] =E(—¢ +e¢,).

Inthe case of By, the ladder operators E( + e, ) correspond-

ing to + e; are associated with the elementary operators
themselves:

E(+e¢) =b:'r/\[i, E(—¢) =bi/\/§'

As aresult of this prescription, let us examine what the com-
mutation relations are. The identity (2.6d) proves very help-
ful. From (3.3a) we get the following commutation relations
in accord with (4.1a) and (4.1b):

[E( + e;),E( - e,')] = H,': = [bjsb11/29

[E(e; —€),E(—e + ¢)|=H,—-H,

[HI’E( iej)] = iéqu( + ej)’

[HoE(te xe)]=(18; £8,)E(+e t+e).
From (3.4a) we derive the following commutation relations
in keeping with (4.1a):

[E( + ¢ +ej)’E( — € "’ej)] = H,; -l-—ij

Finally from (3.4a) and the supplementary relations (3.5a)
we also get those commutation relations expected from
(4.1c), e.g.,

[E( "l"' ei + ej)’E(ek + el)] = 09

[E(+e +¢)E(~¢ +e)]=—Ee +e).
The above exercise reveals that the complete set of funda-
mental relations for parastatistics might also been discov-

ered from the commutation relations for orthogonal alge-
bras.

V. PARA-BOSE STATISTICS AND OPERATOR
REALIZATIONS OF SYMPLECTIC ALGEBRA45

According to Cartan classifications of Lie algebras, the
symplectic algebras Sp(2N) are denoted by Cy . In terms of
the set of N orthonormal vectors introduced in Sec. IV, all
the roots of C, are conveniently enumerated as

te te, =2
i>j=1.2,..N. In this section we give the operator realiza-
tions for the ladder operators E(a), for every root a of Cy .

This enables us to derive the algebraic structure of Cy in its
canonical form:

[EC+ 2¢,),E( —2¢,)] =2H,, (5.1a)
[E(e; —¢).E(e; —e))] =H, — H, (5.1b)
[E(e; +¢),E(—¢ —e)]=H, +H, (5.1c)
[HHE(+2¢)] = +26,E( +2¢), (5.1d)

[HioE(te te)]=(L£8,£6:)E(Le te)
(5.1¢)
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[E(e).E(B)] = N,sE(a +B). (5.10)

Here N,z is a c number required to vanish when @ + 8
is not a root of the algebra, e.g., if a=e; +¢ and
B=e, +e¢;. In the derivation of the structure (5.1a)-
(5.1f) we might, at the outset, use the operators obeying
Bose statistics and then in the spirit of Sec. III note the con-
sistency of this structure with para-Bose statistics. However,
in order to point out here that the complete set of fundamen-
tal relations for parastatistics might also have been discov-
ered en route to the commutation rules for symplectic alge-
bras, we prefer to work in this section directly with
para-Bose operators a,,a,,...,ay and their adjoints. They en-
joy the fundamental relations (3.3b), (3.4b), and (3.5b).

We give the following prescription:

E(e; + &) = (i/2){al,al}, i>],

E(—e¢ —¢) = (i/2){a,,3,}, i>),

E(—e +¢)=14a,af} =E(e, —e,), i>],
E(+2¢,) =ial’/\2, E(—2e,)=ia}/\2.

In order to justify the symplectic algebraic structure, the
identity (2.6¢) proves very helpful. From (3.3b), we derive
(5.1b), (5.1d), and (5.1e). From (3.4b), we derive (5.1a)
and (5.1e). The Cartan generators H are identified as

H, ={a},a,}.
Finally the verification of (5.1f) requires the use of supple-

mentary relations (3.5b). In this way we find the consisten-
cy of the para-Bose statistics with the symplectic structure.

(5.2)

VI. GENERALIZED PARASTATISTICS AND OPERATOR
REALIZATIONS OF GRADED-LIE ALGEBRAS

In this section, we generalize our considerations of Secs.
IV and V to graded Lie algebras. The operator realizations of
graded unitary algebras are already well known. They are
conventionally based on M fermionic operators b, and N
bosonic operators a; and their adjoints. We first observe that
the resulting graded Lie structure gu (M /N) is entirely con-
sistent with (2.1a)—(2.1e), i.e., with the generalized para-
Fermi-Bose interpretation of b, and a;. Generalizing the
considerations of the last two sections, we further note that
the orthosymplectic structure is consistent with the com-
plete set of postulated relations of generalized parastatistics
given by (2.1)-(2.3), provided the following identifications
are made for the even generators E 5, Ez5, Ezz, E; By, Ej,
and the odd generators S,,, S, Sz, Sz of the orthosym-
plectic algebra:

Eaﬁ=5[ba’bﬁ]’ Ezp =5[bl,bﬁ]’
Ez=4[bl.b}],

E; =Ha,a;}, E;=Hala}, E;=4{alaf},
S, =Ha,b,}, S, =4alb,},

Sz =4Hblal, Sz=ublal}

(6.1)

Given that the generators are thus constructed as bilin-
ears of operators obeying generalized parastatistics, it is
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straightforward to work out the (anti-)commutation rela-
tions among them. We give some of them here. The bracket
between an even and an odd generator is a commutator, e.g.,

[Eae 5] =0, [EsSy) = 8oy —buSp0r
[EpSp] = 84Sm + 84Sy, [EpSz] =0.

Thebracket between two odd generators is an anticommuta-
tor, e.g.,

{Sc_li"sl_ﬂ—j} - 0, {Sal"gjﬂ} = 5anﬂ + 6¢ZBE_7I' (6-3)

Thus we find that generalized parastatistics is intimately re-
lated with orthosymplectic structure, as is ordinary parasta-
tistics with orthogonal and symplectic structures.

The significant results in this work are the relative or
mixed bracket relations, such as (2.1¢)—(2.1e) and the alge-
braic constructions for the supergroup generators, such as
(6.1). It is worth pointing out that the verification of the
trilinear relations, such as (2.1)-(2.3), and also of the alge-
bras of the generators of various groups, becomes simpler
and almost self-evident if the operators a’s and b ’s are de-
composed into their Green’s components and the group gen-
erators are also expressed in terms of them. Thus

a,~=;a}‘, ba=;b§.

Here the sum extends over all the Green’s components,
which are as many in number as the order of parastatistics
obeyed by the operator. Following Greenberg and Messiah,®
it can be shown that all the para-Bose and para-Fermi opera-
tors must have the same order to ensure validity of the non-
trivial mixed trilinear relations.

In (6.4), we have normal relations

(6.4)

[afa]]- = [ala]*]- =6,
= [afbs]_={b2.b3}
={b3.b}} —8,4=0, (6.5)

for each component given, and anomalous relations between
two different components:

{at,af} = {at.a/} = {a},b 2}

= [b4b2] =[b4,657]=0. (66)

The algebraic constructions of the last three sections also
become transparent through the introduction of Green’s
components. For example, in (6.1),

1 1
E. =;'2— [62.65], E; =;7{“f’“f}’
(6.7)
Su =3 5 latb2).

A

Thus each generator constructed as a bilinear in para-
Bose and para-Fermi operators reduces on their decomposi-
tion into Green’s components into a direct sum of diagonal
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A dictionary of correspondence is established between the dynamical variables for spin-glass
fluid and Yang-Mills plasma. The Lie-algebraic interpretation of these variables is presented
for the two theories. The noncanonical Poisson bracket for the Hamiltonian dynamics of an
ideal spin glass is shown to be identical to that for the dynamics of a Yang—Mills fluid plasma,
although the Hamiltonians differ for the two theories. This Poisson bracket is associated to the
dual space of an infinite-dimensional Lie algebra of semidirect-product type.

I. INTRODUCTION
A. Background physics

Halperin and Saslow' and Andreev? have introduced
condensed-matter theories of spin glasses, i.e., disordered
magnetic spin systems whose ground states are degenerate
under rotations, Condensed-matter systems whose ground
states are degenerate under a continuous symmetry are often
described macroscopically in terms of an order parameter
field taking values in the Lie group associated with that sym-
metry. The order parameter field describing the low-tem-
perature configurations of a spin glass in the Halperin—Sas-
low—Andreev theory is a spatially varying orthogonal matrix
O(x), acting on classical spin vectors at each point x. The
matrix O(x) is assumed to be slowly varying in space (see
also Toulouse,> Henley et al.,* Bray and Moore,> Saslow,®
and Henley”). The spins themselves may be eliminated in the
Halperin-Saslow—Andreev theory and their dynamics re-
placed by that of the order parameter field, O(x,?).

Singularities in the order parameter field are called de-
fects. These defects can be classified topologically by con-
ventional homotopy theory (Toulouse and Kléman,® Volo-
vik and Mineev,” Mermin,'® and Michel'!). The presence of
defects (singularities in the order parameter field) suggests
introducing additional degrees of freedom that may be de-
scribed by gauge fields associated to the symmetry group of
the degenerate ground state. For spin glasses, the symmetry
group is SO(3) and these additional gauge fields have been
introduced heuristically (in Dzyaloshinskii and Volo-
vik,'>!? Hertz," José and Hertz,"* and Dzyaloshinskii'®'7)
by replacing ordinary space derivatives with covariant de-
rivatives according to the SO(3) minimal-coupling prescrip-
tion in Hamilton’s principle at the level of Ginzburg-Lan-
dau mean field theory for the order-parameter dynamics.
(See also Fischer'® and Rozhkov'®.) This Ginzburg-Lan-
dau type of model could presumably be derived from a lattice
model in three dimensions (by the renormalization group
method, for example), but as yet no explicit connection
seems to have been made between the macroscopic gauge
fields and microscopic concepts such as frustration in more
than two dimensions. For the two-dimensional case, the con-
cept of local exchange invariance on a frustrated planar lat-
tice leads naturally to an analogy between nonlinear spin-
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glass hydrodynamics and Yang-Mills SO(3) gauge theory
(see, e.g., Refs. 12 and 13).

The Ginzburg-Landau theory with covariant deriva-
tives describes the dynamics of isolated defects in terms of
dynamics of a gauge field. Interactions among defects (An-
dreev?) and defect cores (Kawasaki and Brand?*’) may be
introduced by modifying the Hamiltonian or free energy of
the system. For the case of spin glasses, the phenomenologi-
cal theory so defined lacks the couplings between space and
spin indices that complicate the free energies of superfluid
3He-B (Toulouse and K1éman®), and cholesteric liquid crys-
tals (Toulouse and Kléman,® Bouligand ez a/.,%! Mermin'?),
which can also be described by order parameter fields taking
values in SO(3). Other generalizations also exist, such as
(1) local anisotropy (Saslow??), (2) remanence, an external
field, or a tendency toward ferromagnetism (Halperin and
Saslow'), and (3) dissipation, e.g., spin diffusion and relaxa-
tion of the order parameter (Halperin and Saslow’). Recent
reviews of spin glasses are given in Fischer'® and Chowdhury
and Mookerjee.??

B. Problem statement

Asone can glean from the previous remarks, there exists
at least a partial analogy between fluid dynamics with inter-
nal degrees of freedom (e.g., spin-glass dynamics, super-
fluids, and other quantum liquids) and Yang—Mills fluid dy-
namics. This analogy was introduced for spin glasses by
Dzyaloshinskii and Volovik'>!* and Volovik and Dot-
senko,” and discussed for superfluids and other quantum
liquids by Dzyaloshinskii and Volovik!®> and Khalatnikov
and Lebedev.?* Here, we propose to examine this analogy in
the framework of the Hamiltonian formulation of nonlinear
hydrodynamic theories. In Sec. I, we present a unification
of the nondissipative theories of spin-glass dynamics, Yang—
Mills plasmas, and Yang-Mills magnetohydrodynamics
that combines their various Hamiltonian formulations into a
single Poisson bracket, which we associate in Sec. 111 to the
dual space of a Lie algebra endowed with two different types
of nontrivial generalized two cocycles.

During the past few years, Poisson bracket methods
have been used to derive nonlinear hydrodynamic equations
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for various complex fluid systems. These systems include
spin glasses (Dzyaloshinskii and Volovik'®); hydrodyna-
mics of defects in the continuum description of condensed
matter, e.g., vortices in superfluid “He and disclinations in a
planar magnet (Volovik and Dotsenko®*); rotating super-
fluid “He and *He with spin and orbital angular momentum
(Khalatnikov and Lebedev,”® Holm and Kupershmidt?®);
as well as Yang—Mills plasmas (Gibbons, Holm, and Ku-
pershmidt,?” Holm and Kupershmidt?®).

The Poisson bracket method provides a guide for deter-
mining conservation laws and a framework for studying
Lyapunov stability of equilibrium solutions (see Holm et
al.?®), as well as a structure for pointing out similarities and
differences among various theories. We emphasize the latter
structural aspect in this work, by showing that the Poisson
brackets for spin glasses and Yang—Mills plasmas are iso-
morphic. Thus, although the Hamiltonians and physical in-
terpretations of the two theories differ, the Lie-algebraic na-
ture of their Hamiltonian structures is the same. This
Lie-algebraic nature allows us in Sec. IV to set up a dictio-
nary of correspondence between the dynamical variables for
spin-glass fluid and Yang-Mills plasma.

il. SPIN-GLASS DYNAMICS AND YANG-MILLS
MAGNETOHYDRODYNAMICS

The gauge-field formulation of the nonlinear hydrody-
namic equations describing the continuum dynamics of de-
fects in condensed matter is developed in Dzyaloshinskii and
Volovik.!213% In this formulation, gauge fields are intro-
duced via the minimal-coupling hypothesis in Hamilton’s
principle as additional variables coupled to the defects, rep-
resented in turn as densities of gauge charges. Physical appli-
cations include crystals with continuously distributed dislo-
cations and disclinations; superfluid Helr with vortices;
liquid crystals with rotational disclinations; and two-dimen-
sional spin glasses, regarded as the continuum limit of a
planar lattice of magnets with disclinations.

The problem of formulating nonlinear dynamical equa-
tions for ideal (nondissipative) media containing continu-
ously distributed defects is addressed here via the Hamilto-
nian approach. That is, the dynamics of a continuously
defected medium is represented in Hamiltonian form, i.e., as

d,u={Hu}, 2.1)

for Hamiltonian H and Poisson bracket { , } defined on the
space of dynamical variables u.

An example of such a system and the starting point for
the present analysis is the theory for spin glass (continuum
limit of an antiferromagnet having nonzero equilibrium dis-
clination density) of Volovik and Dotsenko.?* In this theory,
the gauge-charge density G is the three-component magneti-
zation density, which generates the internal symmetry group
of three-dimensional rotations. The corresponding gauge
potential 4, i = 1,2,3, transforms under these internal sym-
metry rotations like a gauge field (see, e.g., Drechsler and
Mayer>'). The disclination density is identified with the
gauge-field intensity

By =4, — Ay, + [4:,4,] (2.2a)
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or, componentwise,

Bj =Af —A%, +15,4747, (2.2b)
with notation explained below.

In our notation, Latin indices i, j,X,..., run from 1 to
(n =3 for three-dimensional space), script Latin indices
asbye,...,run from O to n, and the charge G'belongs to the dual
g* of the gauge-symmetry Lie aigebra g, with 4,€g. The ad-
joint representation map ad: g—End g denotes multiplica-
tion in g: ad(y)z = [y,z]. Another map g—g*, gDy —*yeg*
is defined by the rule

(*y,2) = (»,2), (2.3)

where (, ) is an invariant symmetric nondegenerate form on
g (e.g., the Killing form, for g semisimple). The structure
constants of g are denoted ¢/5 [see (2.2)] in a basis with
elements e, , where Greek indices run from 1 to M = dim g.
In this basis, we have the commutator relation

[exses ] =thge,. (2.4)
Wedenote 4, = 4 7e, and G = G, ¢% wheree®, a = 1,....M,
are elements of the dual basis, satisfying (¢”, ez ) = 63. The
rule (2.3) associates to each element yeg a corresponding
dual element *yeg*, via

*p2P: = (*9,2) = (3,2) =:1)°8,52", (2.5)

where g,, = (e,,eg) is the matrix of the invariant form in
the basis {e_ }.

To the linear operation ad on g, there corresponds an-
other linear operation ad* (essentially minus the transpose
of ad, in a matrix representation), which acts on g* as de-
fined by

(ad*(y)*z,x): = (*z,[xy])
for x,yeg and *zeg*. In components, then,
(ad*(p)*z),x* = (ad*(p) *z,x) = — (*z,ad(y)x)

(2.6)

= —(*z,[yx]) = —z,t5,0"x%
so that
(@ad*(»)*2), = —yPt},z,. 2.7

We may now define (n + 1) covariant derivative opera-
tors acting on g-valued functions of space and time. Namely,

D=V —ad(A), (2.8a)
with n spatial components

D, =9, —ad(4,), (2.8b)
and

D, =3d, — ad(4,), (2.9)

for the time component. Similarly, one defines (n + 1) co-
variant derivative operators acting on g*-valued functions

D* =V —ad*(A), (2.10a)
with components

D* =9, —ad*(4,), (2.10b)
and

D¥* =9, —ad*(4,). 2.11)

If ¢ and & are functions of space and time with values in g and
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8%, respectively, then, for example, we have the partial-deriv-
ative relations

(38), = ((D14).8) + ($,(D:#)), (2.12)
since

DF=— (D), (2.13)
where ' stands for the “adjoint.”

We also have
*[D,(w)] =D*(*w), Vuweg, Vae(0,..,n). (2.14)

Indeed, for any yeg, we have, denotingx =4,
(*[D,. (w)]1y) = (D, (w)y) = (w, — ad, (w),y)
= (w,y) — ([xw].y)

= (w.) + (w,[xp]), (2.15a)
and
(D*(*w)p) = (*w,p) — (ad} (*w).p)
= (w, ) + (*w,[xy])
= (w,.p) + (w,[xy]). (2.15b)

Comparison of (2.15a) and (2.15b) proves (2.14).
From the covariant derivative operators, one defines the
fields

[D:,D,] = ad(E)), (2.16a)
[Di)Dj] =ad(-Bij): (2.16b)

with spatial components
_

{H,F} = —fd"x[;g [(K.-c?j +0,K; +B;G,,)§—H—+B
J

K,

OF SH
t7;G 9,6 —t8 A7
+5G,,[°““5(;B+('“ '"A)JA?
oF 6H 6H
— B —+ (639, +t5, A7) —|},
5A}'[ JléKi+(ﬁ,l+ By ’)5G3]

E, =4, —Ay; + [4,40] =Fyy = — Fy,  (2.172)

B;=A4,;,—A4,,+ [4,4;] = - F,, (2.17b)
where subscript-comma notation is used for partial deriva-
tives, e.g., 4,; = (34,/9x’). In n spatial dimensions, the
one-form E has n spatial components E;, and the two-form B
has n(n — 1)/2 independent spatial components B;, with
B; = — B; (skew symmetric).

In Yang-Mills plasma theory (Gibbons, Holm, and
Kupershmidt,”” Holm and Kupershmidt?®), the Yang-
Mills fields F_, appearing in (2.17) satisfy

*(D_Fy=J% ad,=01,..n, (2.18)

where J 4 with components J° = G, J' = GV, is the gauge
current density, with v/, i = 1,...,n, denoting velocity compo-
nents of the moving medium. Script indices are raised and
lowered by the Lorentz metric, with signature (n — 1). The
gauge charge is conserved, since

D*Jé=D**(D _F*“) [by (2.18)]
=*(D,D,F*%) [by (2.14)]
= —jad(F,)F*“=0 [by (2.16) and (2.17)].

(2.19)

In the Volovik-Dotsenko spin-glass theory, the struc-
ture constants 7 g, in (2.2) for the gauge symmetry algebra
are those of so(3): g, = €,4,, the totally antisymmetric
tensor in dim g = 3 dimensions, with €,,; = — 1. Let X be
the defect momentum density and p the inertial mass density
of the defects. The Poisson bracket for spin glass proposed by
Volovik and Dotsenko® is then expressible as

6H oH
« 00 4 09 22
Faae P ]

oH " OF 6H

o Pk,

(2.20)

in three dimensions (7 = 3) and for functionals H and F of the dynamical variables (K;,G,, p, 4 7). In Hamiltonian matrix
form, the spin-glass equations corresponding to the Poisson bracket (2.20) are

K; (K9, +d,K; + BjG,) pd, 0 8H /5K,
a, 0 0 6H /5
3%, =- p ey e (2.21a)
4] B; 0 (833, +12,4]) | | 8H /54
G, 0 0 (859, —t2,4) t%,G, 8H /G,
for Hamiltonian [ Volovik and Dotsenko,** Eq. (6.11)]
H=fd"x[i |K|2+—1—p‘A,,-A"+—1—G:G“], (2.21b)
20 2 54
with constant susceptibility y.
In general, Hamiltonian equations are expressible as
du=b-22 _(hu), (2.22)
u

where the Hamiltonian matrix b defines the Poisson bracket {H,F} in terms of the dynamical variables u according to the
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standard form

{H,F}=fd"x§£-b-.51’-. (2.23)
bu Su

The spin-glass Poisson bracket in (2.20) defined by the Hamiltonian matrix b given in (2.21a) is bilinear, skew symmetric,

and satisfies the Jacobi identity. To demonstrate the last property (which is neither self-evident nor trivial), we map the

Hamiltonian matrix b in (2.21a) into an affine form, by using the invertible transformation

P=K+ G, A% (2.24)
and leaving p, A% and G, unchanged. Under such a map, the Hamiltonian matrix b changes according to the chain rule, i.e.,
b, = Jb-J", (2.25)

where J is the Fréchet derivative of the map (2.24) and J' is its adjoint. The resulting Hamiltonian formulation of the spin-
glass equations in the new variables (P;,0,4 ,G, ) is found [after matrix multiplication as in (2.25) and elimination of old
variables K in favor of new ones P], to be

P, Pd, + P, pd; akA? —4 f,i Gﬂai 6H /6P,
a 0 0 0 oH /5

a, pa = — o v gl (2.26a)
4; A59, +A% 0 0 850, +15,47| |6H /547
G, 3G, 0 &89, —1t8.47 t1,G, 6H /5G4

with Hamiltonian
H=[ @] P+ G AT + 2 prA A+ o G267, (2.26b)
20 2 4

By being affine (linear plus constant) in the dynamical variables, the Hamiltonian matrix b, in (2.26a) yields a Poisson
bracket [given by (2.23) with b replaced by b,] that may be associated to the dual space of a certain Lie algebra with a
generalized two-cocycle on it (Kupershmidt®?). In this case, the Lie algebra is of semidirect-product type,

g, =D&{A% [(A@g)&(A" " '@g*)]1}, (2.27)

where D is the Lie algebra of vector fields on R™ and A’ is the space of differential i forms on R". The dual coordinates are P,
dualto d,€D;p, to 1€A’; G,, to 1 ® e®e(A° ® g), i.e., functions taking values in Lie algebra g, the symmetry algebra; and 4 ¢
dualto (3, 1d"x) ®e’c(A" '@ g*),i.e., (n — 1) forms taking values in the dual symmetry algebra g*. In (2.27), & denotes
semidirect product; ®, tensor product; and &, direct sum. Mathematical discussion of this Lie algebra is deferred until Sec.
III. At this point, we only remark that association of the b, Poisson bracket to the dual of the Lie algebra g, assures that the Ja-
cobi identity for the b, Poisson bracket is satisfied. Since b, is related to b in (2.21a) by the invertible transformation (2.24),
the Jacobi identity is also satisfied for the Poisson bracket (2.20) defined by the Hamiltonian matrix b in (2.21a).

Remarkably enough, a gauge-covariant Poisson bracket for spin glasses exists and is canonically related via (2.17b) to the
Poisson bracket corresponding to the Hamiltonian matrix b, expressed in (2.26a) in terms of gauge potential 4 ¢. The new
Hamiltonian matrix b, is expressed in terms of the gauge field (disclination density) B §, using definition (2.2) in a chain-rule
matrix multiplication as in (2.25). The resulting matrix-Hamiltonian equations for spin glass are now, in terms of B [cf.
(2.26a)],

Pi Pkai + akPi pat - Blﬁm,i + amBg - aIBr,;i Gﬁai CSH/(st
alP 9p 0 0 0 8H /8p 228
‘|Bs| = " |Bgx+B3d, —Bid, 0 0 ts B | |6H /8BS, '
G, 3,G, 0 —t% BY, t1,G,| | 6H/5G,

The Hamiltonian matrix b, in (2.28) is now /inear in the dynamical variables and thus (Kupershmidt*?) may be associated to
the dual of a Lie algebra. In this case, the Lie alebra is again a semidirect product,

g; =D&{A°® [(A°8 g)&(A"2@g*)]}, (2.29)

with the same dual coordinates as in the case of b, associated to g,in (2.27) except that instead of 4 ¢ dual to (d; 1 d "x) ® ¢°
€(A"~'®g*), we now have B dual to (9, 1 J; 1d "x) @ e®e(A" ~? @ ¢*), i.e., {B §} dual to (n — 2) forms taking values in
the dual gauge algebra, g*.

Yang—-Mills MHD: The Poisson matrices b, and b, for spin glasses in (2.26a) and (2.28) extend the corresponding
matrices for Yang-Mills magnetohydrodynamics (YM-MHD) (Holm and Kupershmidt®®), by allowing nonzero entries for
Poisson brackets between the gauge charges and the gauge fields. The Hamiltonian for YM-MHD is (Holm and Kuper-
shmidt?®)
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H= fd"x[_;; IP|>+ U(p) + %(*Ba,.jp;;)] . » (2.30)

Remarkably, when the YM—-MHD Hamiltonian (2.30) is used with the spin-glass Hamiltonian matrices b, and b, in (2.26a)
and (2.28), respectively, the same dynamical equations reemerge for YM-MHD as in Holm and Kupershmidt.?® That is,
correct YM~MHD equations reappear using the spin-glass Poisson bracket (2.28) with the YM~MHD Hamiltonian (2.30).

The spin-glass Hamiltonian matrices b, and b, extend their YM—-MHD counterparts found in Holm and Kupershmidt?®
by allowing semidirect-product actions instead of simple direct sums among quantities dual to gauge charges and gauge fields,
in the Lie algebras g, and g5. Since this extension of Hamiltonian matrices is available for YM-MHD, it is natural to expect the
Hamiltonian matrix for chromohydrodynamics (CHD: the non-Abelian Yang-Mills plasma theory from which YM—-MHD
is derived) also to have an extended counterpart. This extended counterpart may, in turn, find application in the theory of
condensed matter with internal symmetry variables.

To determine this extension of the CHD Hamiltonian matrix, we propose to argue heuristically: we start from the
extended YM-MHDY/spin-glass Hamiltonian matrix in (2.26a) and enlarge it, by comparing its structure to that for Abelian
charged fluids (Holm??).

There is a standard derivation (see, e.g., Friedberg**) of Abelian MHD from the ideal two-fluid Abelian plasma equa-
tions. Abelian MHD emerges in the course of this derivation in the limit that the dielectric constant vanishes (i.e., displace-
ment current is neglected), the inertia of one species (the electrons) is negligible compared to the other (the ions), local
charge neutrality is imposed, and drift effects (diamagnetic and Hall electric fields) are neglected. In Holm and Kuper-
shmidt®® this derivation has been adapted for the purpose of obtaining the non-Abelian YM-MHD theory from the equations
of chromohydrodynamics (CHD), treated in Gibbons, Holm, and Kupershmidt.?” The CHD equations describe non-Abe-
lian Yang-Mills plasma theory, e.g., quark-gluon plasma physics, in the fluid description obtained by taking moments of the
corresponding kinetic theory with particles interacting via Yang-Mills fields (i.e., Wong’s equations). A consistent Hamilto-
nian theory of special relativistic CHD also exists (Holm and Kupershmidt*®).

Abelian MHD may also be considered as a special case of the Hamiltonian theory of Abelian charged-fluid (ACF)
motion that includes moving-material electromagnetic effects. The equations of ACF dynamics are given in the following
Hamiltonian matrix form in Holm?*:

P, P, + P,  pd; A —A; *E*3,—3rES; Q3;|| 6H /8P,
p 9p 0 0 0 0 8H /8p
3|4, | =] 48 +4, 0 0 8% 53, | | 6H /64, | . (2.31)
*E, FE'—*E38, 0 — & 0 0 | |6H /6*E*
Qo 8.0 0 50, 0 0 8H /6Q

In (2.31) the Abelian charge density @ satisfies Gauss’s law,

ap = Q@ =div *E, (2.32)

which is preserved by the dynamics. In (2.32) the quantity a is the constant charge-to-mass ratio in ACF dynamics and *E is
the electric displacement vector. Actually, the Hamiltonian matrix in (2.31) is a slight extension of that in Holm?>? to include a
generalized two-cocycle between Q and A [the terms proportional to the arbitrary constant s in (2.31)]; Holm??* chooses
s=0.

The Hamiltonian matrix for Abelian MHD may be recovered either from (2.31) for s = 1 when the displacement vector
*E is absent, or from (2.26a) in the Abelian case, when the structure constants ¢ 5, vanish.

Comparing the Hamiltonian matrices (2.26a) for non-Abelian MHD and (2.31) for Abelian charged fluids suggests the
following Hamiltonian matrix for the dynamics of non-Abelian charged fluids:

P, P.3, + 3, P, pd; 6, AP — A%, *ELJ, —I*ELS! G5 9, SH /8P,
P ap 0 0 0 0 6H /6p
3| A¢|=—| 43 +4% 0 0 6568F 5630, +15,AY| | SH/64% | |
*E *EL —*EL3,6, O — 86, 0 tig *E’ SH /5*E}
G, 3G, 0 885, —t5,47 tlz*E} t%5G, 8H /5G,
(2.33)
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where 5 is any real constant. This Hamiltonian matrix reduces to (2.26a) when *E is absent and s = 1, and to (2.31) in the
Abelian case. In comparison with (2.20a) for YM-MHD the Hamiltonian matrix b, in (2.33) for Yang~Mills charged fiuids
(YMCF) has been extended by adding a row and column for the dynamics of the variable *E § , the Yang-Mills analog of the
electric displacement vector. The vector *E  is dual to 4 ¥ in both the algebraic and metric sense: while 4 ¢ is a one-form
taking values in the gauge algebra g, *E is an (n — 1) form taking values in the dual algebra g*. The mathematical

interpretation of the Poisson bracket determined from b, in (2.33) is given in Sec. ITI.
The relation of (2.33) for non-Abelian Yang-Mills charged fluids (YMCEF) to the Hamiltonian matrix for CHD given in
Gibbons, Holm, and Kupershmidt?’ is as follows. Let M define another momentum density via the map

M, =P + (D:*Ek’Ai) - (‘Ek’Bki) =P + (*EI;A e — *EﬁA Ki>

(2.34)

while the other variables (p,A,*E,G) in (2.33) remain the same. The resulting Hamiltonian matrix in the new variables
obtained via direct calculation using (2.25) is given (withs = 1) by

M, M3, + 3, M, pd, O
P dp 0 0
3,47 | = — 0 0 0

J 78 0 0 —858

Gp 3,[Gs +*(DivE);] 0 (D}

In the extended CHD Hamiltonian matrix (2.35) we denote
[see (2.9) and (2.12)]

(D)8 =0,85 +15,4%, (2.36a)

(D¥)g =3d,65 —tg, A%, (2.36b)
and [see (2.7) and (2.15)]

*(DivE), = [Div*(*E)]; = (D}) *EL,

[by (2.36b)] =3, *EL — A% *Ektg,, (2.37)

[by (2.7)) ={[0, —ad*(4,)](*E")},.
The CHD Hamiltonian is (Gibbons, Holm, and Kuper-
shmidt??)

H=fd"x [—217|M+G,,A“|2+ U(p)

1 1

+7*Ea°E“+7*Bﬂ‘Bﬁc]’ (2.38)

with variational derivatives given by
2
SH = fd"x [( ~L 40 p))5p + (VA%)SG,
+ v0M + E*5*E,

+ [Guv + *(DBY), |84 ] , (2.39)

where we have integrated by parts and introduced the nota-
tion

v=p"'(M + G,A%), (2.40)
E = *(*E), (2.41a)
*B, = *(B;). (2.41b)

The resulting Hamiltonian equations of motion for CHD are
[using (2.22) to define the CHD Poisson bracket with Ham-
iltonian matrix b, in (2.35)]

axp={Hsp} = —ai(pvi): )

4% ={H,4%} = — E? — (D))5 (vA%),

(2.42a)
(2.42b)
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0 [G, +*(DivE),d;| | 6H /6M,
0 0 8H /8p
58 (D)8 OH /64 ¢ (2.35)
0 th, *EJ, 8H /5*E ",
thy *E,, t%. G, 0H /56G,
r
3, *EY ={H*E}} = Gyv' + *(D, B¥),
—t4, *EL (VA®%),  (2.42c)

a,Gﬁ = {H'GB} = — ai([Gﬁ + *(Div E).B ]vi)
— (D¥3(GV) —*(D,D,B"),
—thy *ELET —1t4,G, (vA%).
(2.424d)

Upon using (2.36b), (2.41a), and antisymmetry of B *, the
G, equation (2.42d) takes the form
3,Gg = — 3,([Gs + *(Div E), V) — 9,(Ggv).
(2.43)
This becomes simply the equation for gauge charge conser-
vation upon setting

GAUSS: =G + *(DivE) =0, (2.44)

and noting that this relation is preserved by the dynamics of
(2.42b)-(2.42d), since
d,(GAUSS)= — div[ (GAUSS)v] + ad*(v-A) (GAUSS)
= — D¥[(GAUSS)V]. (2.45)
The proof of relation (2.45) is by direct computation, as
follows. Using (2.44) we have
d,(GAUSS),
=3,[Gs + (3,05 —15,AN*E ]
=0d,Gg —15,(3,4 YY*E! + (D¥)gd, *Ef,
= —J,[ (GAUSS)zv'] — 3,(Ggv')
+t5, *EL (D) (vA*) + (D)5 (G, )
— (DMg[th *E (AN ]
[by (2.42b)~(2.42d)].

Thus, in the shorter notation of (2.7) and (2.11), and using
(2.15), we have

(2.46)
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d,(GAUSS)
= Div*(Gv) — J,[ (GAUSS)v'] — 3,(Gv')
+ ad*(v-A)*(DivE),
= —div[ (GAUSS)v]
+ ad*(v-A) (GAUSS) [by (2.37a)], (2.47)

which recovers relation (2.45). Consequently, (2.43) be-
comes

39,Gg = —div(Ggv), (2.48)
upon using the nondynamical constraint (2.44), which may

be regarded as an initial condition by virtue of (2.45).
Finally, we have the momentum equation

M, ={HM} = — M3y —3,(Myv')
—p&[ —v/2+U'(p)]. (249)
Substituting (2.40) in the form
M; =pv; — (G,4;), (2.50)

into the momentum equation, (2.49), readily gives the ve-
locity equation,

plow, +vv, + U'(p) ;]
= —3,(Gd;) — 3(GvA,) — (Gud,tf,),
=(3,G4;) +(G,3,4;) — (D¥(GV)4,;)
—(Gv'\D,4;)
—(G,(AV) ;) — (Gy4,;) [by (2.12)],
=(G,0,4; +V'(D,4; — D;4,) + (Aw) ;)
[by (2.36) and (2.48)],
=(G,— E; —v'B;) [by (2.42b)]. (2.51)
Hence we recover precisely the motion equation for the fluid

velocity in CHD. Namely, with (vXB);: = vaij, in vector
form,

3,v + (VW)v= — VU'(p) —p~"(G,E + vXB).

This completes the derivation of the CHD equations
(2.42a)-(2.42d) and (2.52) from the extended CHD Ham-
iltonian matrix in (2.35) and the CHD Hamiltonian H in
(2.38). The physical interpretation of the CHD equations
(2.42a)—(2.42d) and (2.52), and their derivation from ki-
netic theory is discussed in Gibbons, Holm, and Kuper-
shmidt.?’

The Yang-Mills “displacement vector” *E has an inter-
esting interpretation in spin-glass theory. Namely, E = 6H /
S5*Eis the disclination flux density, so that *E is the disclina-
tion current density. More discussion of this interpretation is
given in the concluding section.

IIl. MATHEMATICAL DISCUSSION

In this section we explain the general mathematical facts
underlying the various Hamiltonian matrices appearing in
the preceding section. This will supply the proof that the
Jacobi identity is satisfied for all of the Poisson brackets in
the preceding section.

A. General notation

Let K= C~(R"); D= D(R"): Lie algebra of vector
fields on R”; A* = A*(R™): K module of differential k¥ forms
on R*, X (&) denotes the Lie derivative of £eA* with respect
to XeD; g: a finite-dimensional Lie algebra over R; g*: its
dual; (, ): a nondegenerate invariant symmetric bilinear
form on g;

(e1,-.-1€pr ): basis in g, satisfying[e,,eg ] =t2ze,,

where 1%, are the structure constants of g; (e',....e™), the
dual basis in g*; if 0:g — End ¥V is a representation of g, then
o(a) (v) is denoted simply by a.v, for aeg and veV.

B. Lie algebra
We start with the Lie algebra g, (2.27). Its commutator

(2.52) is given by the formula
i
x! X2 [XX2]
fled'  fled X'(fMHed—x*(fHea +ffeld ]
o'eb'  w'eb?| X'(oPeb?—X2o')eb'+flo’edbi—fw'edb’ ’ (-
g ., & X&) —X*(gh
where X'eD ; f.g'eK ; w'e A"~ ; a'eg; b'eg*; i = 1,2; and, e.g., for heg and pairing ( , ) between g*and g,
(@b%h):= —(b3[a",h]).
Claim: The commutator (3.1) defines a Lie algebra.
Proof: This results from the following general fact.
Theorem 3.1: Let ) be a tensor field on R”, i.e., a K and D module, so that
X(fo) =fX(w)+X(f)w, XeD, feK, we. (3.2)
Let o:g—End ¥ be a representation of g. Then the following formula defines a Lie algebra g(Q,0):
x! x? [Xl’le
f1®al f2®a2 Xl(f2)®a2__X2(fl)®al +fl_f2®[al,02]
o' @t 0@V =X‘(a)2)®v2—X2(a)‘)®v‘ +floteal® — flo'edy! (3.3)
g . g X' —-Xx%gh
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where X ‘eD, f'and g'eK, w'e), a'eg, v'eV, i = 1,2. A straightforward computation reduces the Jacobi identity for (3.3) toa
set of identities of the form (3.2).

C. Generalized two-cocycles on the Lie algebra g,

We now turn to the generalized two-cocycle on the Lie algebra g, responsible for the field-independent terms in the matrix

(2.26a).
Proposition 3.2: The following formula defines a (generalized) two-cocycle v, on g, = g(A” ™!, ad*):

vi(1,2) =s(f'o},(b%a") — [P0}, (b'0%)), seR, 34)
where (, ) is the natural pairing between g* and g; and the notation v, (1,2) is shorthand for
X, X
3%
Recall (Kupershmidt,>?> Chap. viii) that a bilinear form v on a Lie algebra g’ over KX is called a (generalized) two-cocycle if
V(ny)”" —V(YX)’ X’Yeg” (35)
v([X,Y),Z) +cp.~0, XY Zeg, (3.6)

where “c.p.” stands for “cyclic permutation”; and a ~ b means (@ — b)eZ, Im d,, i.e, (a — b) is a “divergence.” One checks
directly that v, in (3.4) is indeed a two-cocycle on g,.

D. Poisson bracket

The Poisson bracket associated to the two-cocycle v, on the Lie algebra g, is computed by the standard rules of the general
theory described in Kupershmidt,>? Chap. viii (with n-dimensional volume element d "x)

_ 8F 8H 8H s sH
(H,F}, = fdx{ [(Pka-»am( )+Gaa;(56) (8A? — )(5,;8)“"9(5,0)}

B
SF SH SH SH
4,G, G, — —t2 A7 4+ 8°59
5G, [" (5Pk)+ #7756, T (= tedi aSk)(&A’}f)]
5F SH SH 5F SH
+OF T (42, +4° ( ) t5 A7 5*3( )] OF 4 ( ) .
(SA‘ [( %) Pk +( By + Ogs ) 663 + 5[) WP 5Pk 3.7

where dual coordinates on g} are chosen to be
P, dualtod,eD; G,tolee,cKeg® A to(d Jd"x)ee”; ptolek.

E. Spin-glass Hamiltonian matrix
The Hamiltonian matrix b = b(g,,v,) associated to the Poisson bracket (3.7) via the standard rule

OF , 6H
R~ 2by o
is given by
P, Gy A% p
P, | P, +9.P Gg9, 3, A% — A%, po;
G, .G, t;G, —tE AL + 859, 0 |. (3.8)
AT A%d, + 4%, t5,AY + 6550, 0 0
P aip 0 0 0

This is b, in (2.26a) when s = 1.

F. Origin of the generalized two-cocycle

Since the two-cocycle (3.4) plays a cruqial role in what follows, we explain its origin and unique features. Let Qbean
additional tensor field on R", and let : 1 - be a homomorphism of D modules, i.e.,

FX(0)) = X (3(w)), XeD, we. (3.9)
(For example, & = A¥, = A* +!, % = d.) Then « induces a natural Lie algebra homomorphism
F:g(Q,0) - a(,0). (3.10)

Therefore, from 1 one obtains a Hamiltonian (i.e., canonical) map ¢: C; (Q,0) - C; (f,0) on C;, thering of functions on the
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dual to the Lie algebras g(£),0) and g(£,0) [see Chap. viii (3.42) in Kupershmidt*?). In particular, take
Q=A""1, Q=A" ¢= —d, V=g* o=ad*

and denote by 7° coordinates on g¥ = g(A",ad*)* dualtod "x @ ¢*. Then by formula viii (3.42) in Kupershmidt,>? the map ¢*
can be written in the form

P,=P; G,=G,; Ai=n; p=p; (3.11)

and ¢* is a Hamiltonian map between the cocycles Poisson bracket (3.7) |, _ , and the Poisson bracket on g¥ = a(A™ad*)*,

1=~ 2 1 (22 0 (2) £ (2]

5F SH SH L S8H1 . 6F (. 6H SH\  6F , (6H
G, t7,G ts q “ —1t8 —3, .
5G, [ k (6Pk)+ 756, T T 5 | T e (7"" sp, &7 5GB)+ & (m)l
(3.12)

Now, as a K module, g, = 6(A”, ad*), has inside it two submodules: K ® gand A" ® g*, which are mutually dual as D modules,
i.e.,

(X(),a) + (b,X(a))~0, acK®g, beA"®g*. (3.13)
This means that we may have a symplectic two-cocycle v, on g,
v,(1,2) = —s(f P2 (b2%a') — ' (b',a*)), seR, veA (3.14)

And indeed, v, is a two-cocycle on g,, as one verifies by a direct computation. [ A verification is required since, for non-Abelian
g, K ® g acts nontrivially on A" ® g*; otherwise (3.13) would have guaranteed that (3.14) is a two-cocycle.] Now, since the
map ¢* in (3.11) is constant coefficient, it transforms two-cocycles on g, into two-cocycles on g,; in particular, v, is trans-
formed into v,. From this discussion, one concludes thatif ) ® V" £ A"~ ! @ g*, then one cannot have a two-cocycle on 3(Q,0)
similar to v,, since a symplectic two-cocycle of the type v, exists only on g(A”, ad*). This observation saves us from a futile
search for new two-cocycles in the extended YMCEF case, when *E variables (dual to A’ @ g) come into the picture.

G. Lie algebra g,
The Lie algebra g, = g(A" '@ A', ad* @ ad) (*E is included), has commutator (cf. Theorem 3.1)
Xl XZ [Xlx2]
flea! flead X' ea:—X*(fY) ea' +ff*e [a',d?]
0'®b! 0*®b?|= X' (0?)8b?— X o' )@bl—i—f’a)zeal.bz—fza)l‘saz.bl , (3.15)
uled pred | X'(wHea —X*(u')ea' +futeld,a’] —fu'e[d’a']
g' s g X' —-X%gH

where X ‘eD, ' g'eK, w'eA" ', u'eA’; a'd'eg; b'eg*; i = 1,2.

H. Remarks

(a) g, contains g, as a subalgebra, and g, itself is a semidirect product of g; and A' ® g. Hence, there is a two-cocycle #, on
a;, which coincides with v, on g, and vanishes when one of its arguments belongs to A’ ® g:

71(1,2) =s(f'0} (b%a") — fPw,;(b'a%)), seR. (3.16)
(b) There is also a new symplectic two-cocycle on g,
v3(1,2) = ¢, (@' A6 ,@*) — * Ap'(b%a')), c,eR. (3.17)
(c) The new Poisson bracket associated to the two-cocycle ¥, + v, on g, equals
; OF % " SH
{H,F}3_{H,F},+fd x[_(*Eﬁa — 3, *EL, 5, )+6G,, t%s *EX + M ¢,636; ] (6*E")
6H ¢ 6H oH
Oy *E!, —*EL3,8,) | —— | +1tls *E; 88 — 3.18
+5*E, [(k )(6Pk)+,,ﬁ A (3.18)

where {H,F} is the Poisson bracket corresponding to b, in (3.8), and *E § is dual to dx* ® e, in both the metric, and the Lie-
algebraic senses. For ¢, = 1, the Hamiltonian matrix associated to (3.18) is given in (2.33).

I. Lie algebra g,

Let g, = g(A"~2, ad*). This is the Lie algebra with the commutator (3.3) for w'eA” ~? and v'eg*, i = 1,2. The corre-
sponding Hamiltonian matrix is given by formula (2.28), provided one lets Bj be the coordinate dual to
(3,49, 1d"x) @ e®eA" 2@ g*.
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V. CONCLUSIONS

We have considered the analogy between spin glasses and Yang-Mills fluids (CHD) within the Hamiltonian framework.
Our results complete this analogy, according to the following “dictionary.”

Yang-Mills fluid

spin glass
p, defect inertial-mass density P>
v, fiuid velocity v,
K, hydrodynamic momentum density of defects M,
B;, disclination density B,
F,, disclination current density LJ

Along the way, we have noticed an interesting phenom-
‘enon in YM~MHD and CHD, namely, the existence of two
different Poisson brackets for the non-Abelian case and a
one-parameter family of Poisson brackets for the Abelian
case, in the A representation for CHD, see Eq. (2.33).

Physically, our conclusion is that the analogy between
spin-glass theory and Yang-Mills charged fluids is very
close, on the level of the Hamiltonian formalism. Specifical-
ly, the Hamiltonian matrices are identical for the Volovik-
Dotsenko spin-glass theory and Yang-Mills MHD. In addi-
tion, the Hamiltonian matrix (2.33) in the Yang-Mills
charged-fluid representation provides a potentially interest-
ing extension of the Volovik~Dotsenko spin-glass theory, by
providing a dynamical equation for the disclination current
density *E, which is the spin-glass analog of the Yang—Mills
electric displacement vector.

Our basic mathematical observations are these: the
highly nonlinear candidate (2.20) for the Poisson bracket in
Volovik and Dotsenko,?* when transformed to appropriate
(natural) variables, becomes of affine type and is thus asso-
ciated to a certain Lie algebra, called g,, and a two-cocycle,
called v,, on g,. It turns out that g, is a subalgebra of another
Lie algebra, g,, which closely resembles the chromohydro-
dynamics Lie algebra g,. The Lie algebra g, is, in turn, an-
other subalgebra of g;. Moreover, the two-cocycle v, on g, is
arestriction on g, C g; of a certain two-cocycle ¥, on g,. Fur-
thermore, there is another, canonical, two-cocycle v; on g,
whose restriction on g, vanishes and whose restriction on g,
produces precisely the canonical *E-A structure in CHD.

Roughly speaking, the absence of a dynamical equation
for *E in Volovik and Dotsenko? is of the same nature as the
absence of displacement current. The dynamical equation
for *E is present only in the full electromagnetic or Yang-
Mills field equations, or in an extended theory of spin-glass
dynamics accounting for time dependence of the disclination
current density, F,. In that case, the present theory would
provide the dynamics by using Poisson bracket (2.33), in
conjunction with an appropriate choice for the Hamiltonian.
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mass density of fluid carrying gauge charge

fluid velocity

total momentum density, including YM field momentum
Yang-Mills magnetic field

Yang-Mills electric displacement vector
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Global hyperbolicity of a spatially closed space-time
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A spatially closed space-time is shown to be globally hyberbolic.

I. INTRODUCTION

Global hyperbolicity is one of the most important cau-
sality conditions on a space-time. For instance, a globally
hyperbolic space-time has nice properties' such as the finite-
ness and the continuity of Lorentzian distance function, and
the existence of a maximal geodesic segment between a pair
of causally related points. Furthermore, Geroch® proved
that a globally hyperbolic space-time (M,g) of dimension
n + lishomeomorphic to.S X R with §a manifold of dimen-
sion n. He also pointed out that the converse of this is not
necessarily true. In this paper, we shall show that the con-
verse is true if S is compact and S X {a} is locally acausal for
every acR. This implies that de Sitter space-time, Einstein’s
static universe, and spatially closed Robertson—-Walker
space-time are all globally hyperbolic.

For our notation and conventions we mostly follow
Hawking-Ellis.! In particular, by a space-time (M,g) we
mean a connected time-oriented C* Lorentzian manifold of
dimension # + 1 with C* Lorentzian metricg. A space-time
(M,g) is called globally hyperbolic if (M,g) is strongly caus-
al and J * (p) NJ ~(q) is compact for every p,geM, where
J *(p) [resp.J ~ (p) ] is the causal future (resp. past) of p. A
subset 4 of M is called acausal if every nonspacelike curve
intersects 4 at most once. A subset B of M is called locally
acausal if every point of B has a neighborhood in which B is
acausal. ,

iI. MAIN RESULT

Theorem: Let (M,g) be a space-time homeomorphic to
S XR, where S is a manifold of dimension ». If .S is compact
and S X {a} is locally acausal for every a€R, then (M,g) is
globally hyperbolic.

Proof: Recall that a space-time is globally hyperbolic iff
it has a Cauchy surface, i.e., a boundaryless imbedded sub-
manifold which every inextendible nonspacelike curve inter-
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sects exactly once.> Hence we are going to show that
S X {a} is a Cauchy surface for every aeR.

Let 7 be an inextendible nonspacelike curve in M and
pey. Note that the R coordinate can be regarded as a time
function, which we denote by ¢ [soeach S X {a} is (globally)
acausal]. In case ¢(p) >a, yNJ ~(p) is a past-inextendible
nonspacelike curve and is contained in the region
S X ( — o0,t(p)]. Then it follows from the hypotheses of the
theorem that (M,g) is strongly causal.? Hence yNJ ~(p)
cannot be imprisoned* in the compact set S X [a,7(p) ]. This
means that ¥NJ ~ (p) enters into the region S X ( — «,a].
Since ¥ and ¢ are continuous, yNJ ~(p) intersects S X {a}.

In case #(p)<a, the similar discussion shows that
¥NJ * (p) intersects S X {a}. Hence every inextendible non-
spacelike curve intersects S X {a}. Since it has been noted
that S X {a} is acausal, it follows that S X {a} is a Cauchy
surface, and hence (M,g) is globally hyperbolic.

Remarks: (1) The local acausality of S X {a} for every
aeR is necessary. For example, let (M,g) be a space-time
homeomorphic to S ! X R and

g= (cosht—1)>( —dt>+dx®) —dtdx, (x,1)eS'XR,

where S ! is the one-dimensional sphere. This space-time has
aclosed null geodesic .S ' X {0} = ¢ ~!(0). Thus (M,g) is not
globally hyperbolic.

(2) The compactness of .S is also necessary. For exam-
ple, the universal covering manifold of anti-de Sitter space-
time is not globally hyperbolic,'? but is homeomorphic to
R” XR and R" X {a} is acausal for every acR.

'S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time
(Cambridge U. P., Cambridge, 1973).

ZR. Geroch, J. Math. Phys. 11, 437 (1970).

3See Theorem 2.1. of H. J. Seifert, Gen. Relativ. Gravit. 8, 815 (1977).

4See Proposition 6.4.7. of Ref. 1.
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The one-dimensional “missing moment problem” is solved using Padé analysis. The realization
of this affords the most efficient framework within which to apply a Hankel-Hadamard
analysis for generating rapidly convergent bounds to quantum eigenvalues. The method is

applied to the quartic potential problem.

I. INTRODUCTION

In a recent work, Handy and Bessis® discovered that the
implementation of a “moments problem”? reformulation of
the one-dimensional Schrédinger equation, for arbitrary ra-
tional fraction potential, could yield exponentially conver-
gent lower and upper bounds to the quantum eigenvalues.
This is an important endeavor because it is the best way of
assessing the accuracy of one’s eigenenergy estimate. These
concerns are particularly relevant for singular perturbation—
strongly coupled systems not amenable to conventional per-
turbation analysis. As argued in Ref. 1, a moments approach
is ideally suited for these kinds of problems.

In this work we focus on an important aspect of the
above moments approach. Because of the unprecedented na-
ture of the theory developed by Handy and Bessis, we briefly
outline here the pertinent issues, as well as clarify the contri-
bution made by the present work. A more detailed discus-
sion is presented in the following section.

Given the Schridinger equation for some arbitrary ra-
tional fraction potential, it is straightforward to define a mo-
ments equation. This will generally be a recursive relation by
which the Hamburger moments of the wave function,
i, = § dx x*¥, can be obtained once the energy £ and a
certain finite number of initial moments, x,,..., &£,,, , are speci-
fied. Thus we may express this by u; = F; [ Eyfty,...pft,, |, for
1<i< . Because the ground state wave function is non-neg-
ative' one can then use the Hankel-Hadamard? inequalities
to define a hierarchy of constraints, A, ; (E),...sit,, ) >0,
for E and the m-missing moments (one can always normal-
ize things tou,, = 1). The results of Handy and Bessis’ show
that the Hankel-Hadamard inequalities are sufficiently
strong to yield exponentially convergent lower and upper
bounds to E and the missing moments. In this way, excellent
accurate physical values are realized for all of these quanti-
ties. The above results are readily extendable to excited
states. For simplicity, we limit the present discussion to the
ground state only.

Clearly, the Hankel-Hadamard inequalities define a
succession of rapidly decreasing (m + 1)-dimensional sub-
regions within the (m + 1)-tuple space defined by E and the
m-missing moments. In practice, for systems with too many
missing moments (m > 2), the identification of these subre-
gions becomes costly. It is therefore clear that the identifica-
tion of some formalism by which the number of missing mo-
ments can be reduced or completely eliminated is an
important concern. The basic contribution of this work is the
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attainment of one particular formalism that can systemati-
cally reduce the number of missing moments to zero! The
manner in which this is done highlights some very profound
and very general characteristics of the moment method.
Before proceeding to the next section, it is important to
make more precise the claim made above. As was shown in
Ref. 1, for some systems, such as the sextic problem,
— W + (mx? 4+ x5)¥ = EV, one can find a special wave
function representation space in which the non-negativity
property of the ground state solution is preserved. The new
representation is defined by the zeroth-order WKB expres-
sion ®(x) = exp( — x*/4)¥(x). In addition to preserva-
tion of non-negativity, the new representation also leaves
unphysical W-space solutions as unphysical ®-space solu-
tions. A solution is unphysical if its moments are infinite. It
is immediate to show that in the ® representation space,
there are no missing moments! The original sextic problem
has two missing moments. Thus for this case there exists a
global transformation that completely eliminates all the
missing moments. For the quartic potential problem,
—W" + (mx*+ x*)¥ = EVY, there is no global transfor-
mation to eliminate the one-missing moment nature of this
system.' Despite this, it is still possible to find wave function
representation spaces where the first 0 moments depend
upon £ only, while the remaining moments (g, | ,...) de-
pend upon E and the missing moments. This Q is arbitrary.
Thus this formulation yields an effective zero-missing mo-
ment problem up to order Q. Because the Hankel-Hada-
mard inequalities yield exponentially convergent bounds, in
practical terms, this alternate formulation for reducing the
missing moment problem is just as effective as finding a glo-
bal transformation to completely remove the missing mo-
ments. This is the contribution of the present work. We dem-
onstrate our formalism by applying it to the quartic potential
problem with m = 0.

il. A SHORT REVIEW

The central theme of the work of Handy and Bessis' is
that because the bosonic ground state wave function is non-
negative, one may use the moments problem? to quantize the
system. It is also possible to extend this formulation to excit-
ed states for which the wave function is non-negative.® Con-
sider the sextic potential problem

— V" 4 (mx* +gx°) = EV. (1)
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The pth-order Hamburger moment is defined by
+ oo

up)= dx x"¥(x).

The ground state wave function is non-negative (¥>0),
symmetric, and asymptotically fast decreasing’ so that the
moments exist. Through an immediate integration by parts
Eq. (1) yields a moments recursion relation:

—p(p—Dup—2) +mu(p+2) +gu(p+6)
= Eu(p). )

The symmetric nature of the implicit ground state solution
allows us to also use a Stielties moment representation
which, although not necessary, is more convenient
[1(p = 0dd) =0]. Specifically, through a change of vari-
ables (x’=y), the even-order Hamburger moments are
equivalent to the Stieltjes moments & of a modified function

measure, f (y) = W/\y:

pop =" Tayyre D
5
={(p), a Stieltjes moment. (&)
The moments problem® concerns the specification of the
conditions under which the moments may be used to prove
that a function measure is non-negative. The Stieltjes mo-
ment problem was first formulated in 1895 followed by the
Hamburger formulation in 1920.% Each of these concerns
different types of moments and function domains, as sug-
gested by the definitions for 4 and p. In principle, either
formulation can be used for quantizing our physical system.
Let A(m,n) denote a particular Hankel-Hada-
mard(HH) determinant, as defined by

pim+1)

pn(m) u(m+n)

A(m,un) = :
p(m-+2n)

(4)
The corresponding HH determinant for the Stieltjes case
will be denoted by A(m,n). The Stieltjes moment theorem
states® that the necessary and sufficient conditions for f(y)
to be non-negative throughout the interval [0, 0 ] are

K(O,n)>0 and E(l,n)>0, for all n. (5

The Hamburger moment theorem states* that the neces-
sary and sufficient conditions for ¥{x) to be non-negative
throughout the interval ( — o0, ) are

A(0,n) >0, foralln. (6)

At an intuitive level, Eq. (5) follows from Eq. (6), if we use
Eq. (6) on ¥(x) and x3(x).

Bearing in mind Eq. (3), a recursion relation for the
Stieltjes moments follows from Eq. (2):

ap+3)= (/) [ Ea(p) —mi(p + 1)

+2p(2p —~ V)ji(p — 1)), for p>O0. (7
Because W(x) has an arbitrary normalization and is non-
negative, we may set 2(0)=1. In addition, it is also clear
that all of the moments are dependent on E, 2 (1) and 2(2).
Thus this is a two-missing moment problem. Nevertheless,

pu(m+n)
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as alluded to in the Introduction, the HH inequalities in Eq.
(5) rapidly define a very small three-dimensional subregion
centered around the physical values for E, (1), and 22(2).
Thus, through Eq. (7), the HH determinants acquire an
implicit dependence of the type

AOBE i f) >0, A(LmEfLf,) >0, for n>0.
(8)

On a computer, working with at most @ Stieltjes moments
[&(p), p<Q], a three-dimensional partitioning of a given
region is defined. At each grid point, the corresponding HH
inequalities are tested. In this manner, a consistent subre-
gion can be found. Using Q<12, for the sextic we have
0,=047, i, = 0.56, and E = 1.436.

Clearly the above program can be impractical on slow
computers. One would prefer to transform the problem into
another with fewer, or no, missing moments. For the sextic
case the latter is possible. Indeed, by using

#(x) = exp(S(x))¥(x), 9)

where S§(x) = —1 J— x?, the zeroth-order WKB term, it is
found that a Stleltjes moment ¢-space analysis is of zero-
missing moment type."

The closed form of Eq. {9) does not always work in
reducing the number of missing moments. A specific exam-
ple of interest to us is the quartic potential problem,
V(x) = mx*® + x* It is a one-missing moment problem that
cannot be simplified through closed expressions of the above
type. We will return to this shortly.

It is important to realize that Eq. (9) encompasses some
very important and profound generalities provided by our
moments perspective. Specifically, let us categorize the key
ingredients of our overall program: (I) work within repre-
sentation spaces where the ground state wave function is
non-negative; (11) work within a representation space where
the physical moments are finite; (III) work within a repre-
sentation space where the moments can be readily solved
for (preferably in terms of a recursion relation); and
(IV) choose representation with smallest number of missing
moments. In general, if T(x) >0, then ¢(x)=T(x)¥(x)
defines a suitable representation, with respect to condition
(I). Condition (II) is important because it focuses on the
asymptotic behavior of the desired solution. Insofar as the
asymptotic behavior of solutions to Schrodinger’s equation
are governed by zeroth WKB analysis, it is clear that the
latter is an important concern to our overall program. Con-
dition (III) is the least necessary, as a matter of principle. It
is clearly the most convenient. Condition (IV) is self-evi-
dent.

There are many representations satisfying (I)—(1II), as
will become evident in the next section. If we insist on ele-
gant, closed transformations that completely eliminate the
missing moments, then there is little likelihood of finding
them, except for various special cases.

From a practical standpoint, bearing in mind the fact
that only a small number of moments are actually used,’> it
is clear that the attainment of a complete zero-missing mo-
ment representation is unnecessary. This realization leads to
our principal contribution, developed in the next section.
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11l. SOLVING THE ONE-DIMENSIONAL MISSING
MOMENT PROBLEM

Given an n-missing moment system,
A +n+1)=F(pEffis.ofL,), p>0, (10)

a ¢ representation can be found for which the first @ + 1
moments [Z(0),...,2(Q)] depend on only (n — 1)-missing
moments. The remaining moments { Z2(Q + 1),...} will de-
pend on n-missing moments. The specification of Q is arbi-
trary.

The inductive application of the above can be used to
convert an #-missing moment system into one for which the
first T + 1 moments depend on no missing moments.

The proof of the above is presented in the context of the
sextic potential discussed in the preceding section. A nu-
merical example is given in the following section.

Consider the sextic problem — W" 4 (mx? 4 gx%)¥

= EV. Define the polynomial transformation

I
E Cx*
i=0

The C;’s are complex coefficients. In terms of the W-Stieltjes
moments { 2}, the ¢-Stieltjes moments { 7} become
I
()= Y CICA(Q+i+)).
ij=0
The two-missing moment nature of the sextic potential, as
well as the linear homogeneous nature of the difference
equation in Eq. (7), are summarized by the representation

fi(0) = By(0,E) + 1,B,(0,E) + [1,B,(0,E). (13)

The B, (0,E) coefficients are known and can be genera-
ted from Eq. (7) upon using the initial conditions
B, (j) =6, fori,j=0,1,2.

Substitution of Eq. (13) into Eq. (12) results in

2
#(x) = W(x). (11)

(12)

) = 3 O PECoiC), (14)
where 2(0)=1, and
Q, (p,E,C,,....C;) = vioC;"CjBk(p+i+j,E). (15)
We want to solve for‘,tlh; C’s such that

O,(p,E,C,,....C;) =0, for 0<p<O. (16)

Clearly one expects the number of equations to be less than
or equal to the number of variables, so

1+ 0O<I 7n
If Eq. (16) can be solved, then the first @ + 1 i moments
will depend on one less missing moment than the remaining
fi moments, of order greater than Q.

Assuming the validity of Eq. (16), one can proceed to
reduce the problem, inductively, to one of zero-missing mo-
ments, for the first 77 + 1 moments. That is, assume a solu-
tion set {C} to Eq. (16) has been determined. Let us define

L
S D,-x*
=0

The y-Stieltjes moments satisfy

2
Yx)= é(x). (18)
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L
Ax(p)= Y DDji(p+i+). (19)
iLj=0

Let T be a number satisfying 7' + 2L<Q. In accordance
with Eqs. (14) and (16), we have

1
ﬁX(p) = 2 ﬁkek (p9EaD0""’DL’C09---sC1)’ (20)
=y}
where j1,=1, 0<p<T, and
L
6, = Y D!D;0(p+i+jEC,,...Cr). 21

Lj=0

Itis therefore clear that the solution of an equation anal-
ogous to that of Eq. (16), namely ©, =0 (solving for the
D’s), will make the first T + 1 y-moments depend on no
moments at all, besides being E dependent. Accordingly, we
will focus on solving Eq. (16). The generalization of this
inductive argument is immediate.

Equation (16) is equivalent to

I
S C*CB,(p+i+jE)=0, 0<p<Q. (22)

ij=0

The B’s are known functions of E. From Padé analysis* it is
always possible to find representations of the following type
(E dependences are implicit):

b
By(0) = Y a,B7.

v=1
Equation (23) is an immediate consequence of the partial
fraction decomposition (assuming a multiplicity of 1 for the
roots) of an [n/b] Padé approximant to the expansion

(23)

27 _oS"N(7)

S °B,(0) = o+ 24

azo 2(0) St 9D +O0(s ™) (24)
b a

= Y _. 25

vgl 1'—ﬂvs (23)

Asusual, onerequires» = n + band n<b — 1 [if Eq. (25) is
to hold]. Note that in terms of  and Q, we haver = Q + 2I.
Insertion of Eq. (23) into Eq. (22) gives

b I
S a,B2 3 C*CBIH=0, 0<p<Q.

(26)
v=1 =0
That is,
b
S a,BLP(B,)P*(B,*) =0, 0<p<Q, (27)
v=1
where
I
PB) = zCiﬁ'i- (28)
i=0

It is emphasized that the B s are calculable functions of E ! It
is the C’s that must be solved for!

The specific type of solution to Eq. (16), or Eq. (27), of
interest are those in which the 8’s may be taken as roots of
appropriate polynominals. From the Padé parameters it fol-
lows that if we set n = b — A (1<A<b), then

b=I+(Q+A)/2. (29)
Because the degree of the P polynomial is I and there are b
B’s (b>I),clearly not all #’s can be roots of this one polyno-
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TABLE 1. Generation of ground state energy bounds E_<E<E,, for
quartic potential v(x) = x*.

I 0 A N, E_ E,

7 5 1 7 1.052 1.081

9 7 i 9 1.059 9 1.0619
1t 9 1 1 1.060 34 1.060 47

13 11 1 13 1.060 360 1.060 368
15 13 1 15 1.060 3620 1.060 362 4
17 15 1 17 1.060 362 08 1.060 362 18

mial. However, a closer examination of Eq. (27) shows us
that the roots of the P polynominal may correspond to

P(B,) =0, if B,eS, (30)
where
S§={B,|ImB,>0}. (31)

Accordingly, the C’s are the polynomial coefficients for
I
> Cs' = II —=8.), if N<I,
i=0 B ‘ES'

where N, is the number of elements in S.

The B,’s [refer to Eq. (23)] are not necessarily mo-
ments of a non-negative measure. Because of this, from the
general theory of Stieltjes—Padé approximants it is to be ex-
pected that not all B°s are real.* Accordingly, the number of
elements in S, N,, should be small enough so that N, <. This
is our basic assumption. Our expectation, confirmed by the
quartic case to be presented, is that this is very likely to be
true most of the time.

From the preceding discussion it is evident tha the real-
ization of the basic inequality N, <7, can best be achieved if b,
the total number of 8’s, is as small as possible. Accordingly,
it is best to start with A = b — n = 1, the difference between
the Padé approximant’s denominator and numerator de-
grees.

(32)

IV. THE x* QUANTUM POTENTIAL

The quartic anharmonic oscillator — W” 4 (mx?
+ x*)W = EV is a one-missing moment problem with a re-
cursive moment relation given by

A(P+2)=[EQ(P) —mi(P+1)

+2P2P— 1)a(P—1)]. (33)

35 J. Math. Phys., Vol. 29, No. 1, January 1988

Setting 1(P) = Bo(PE) + ji,B,(P.E), we have
B.(P+2) = [EB,(P) — mB, (P+1)
+2P(2P— 1)B,(P—1)], (34)

where B, (j) =6, ;, for i, j = 0,1. Accordingly, the B, ’s are
computable functions of E. For the B,’s the following repre-
sentation can be determined:

b

Bi(o)= } a,B7, 0<o<2+Q.

v=1

For simplicity, the remainder of this discussion will fo-
cus upon the massless case, m = 0. It will be noted that the
2P(2P — 1) term in Eq. (34) may lead to very large B, val-
ues, particularly if 27 + Q is large (of order 50). Because
the HH inequalities are unaffected if we divide the i (P)
moments by g°, we may modify the B,’s accordingly,
B, (P) =B, (P)/g’. Hence

B (P+2)=(E/g)B,(P)
+[2P2P—1)/?1B, (P—1). (36)

Clearly, 8, —»ﬁv =f,/g. For the range of 2I + Q values
quoted in Table I, an effective choice is g = (21 + Q)/e.
This choice leads to moderate B, values, which in turn lead
to more accurate £ values.

The program defined in the previous section was imple-
mented. That is, the appropriate C’s corresponding to Eq.
(32) (forthef’s) aredetermined. Thefirst @ + 1¢-Stieltjes
moments [Eq. (11)] become dependent on E only:

~ b4 A~
BB _ S By CEBy(P+ i+ B,
&  ii=o
0<PLO. 37

The application of the HH inequalities lead to con-
straints upon E. These are given in Table I. The results are
consistent with the answer E = 1.060 362 09 from Ref. 1.

(35)
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The wave equation is considered for a stratified medium where the stratifications are in the
form of a family of nested C? surfaces along which the velocity ¢ is constant (¢ varying only in
a direction normal to the surfaces). On each surface ¢ is constant, the solution « of the wave
equation is decomposed into an outgoing wave component #™ and an incoming wave
component 1. The associated outgoing and incoming wave conditions are expressed in terms
of integral operators (kernels being time-dependent single and double layer potential type
terms) operating on « and the normal derivative du/dn on each surface. Using the
decomposition the scalar wave equation is split into a vector system involving the components
u™ and u~, the vector system decoupling in a region where ¢ is constant. Such a splitting is
useful for the inverse problem where a reflection operator relating the outgoing wave to an
incoming wave can be defined, and this in turn can be used to determine c.

I. INTRODUCTION

One of the techniques that has been used in the time-
dependent direct and inverse scattering problems associated
with the one-dimensional wave equation

d? 1 92

e u(z,t) = CT(-Z—)"E;; u(zt),
for a nonhomogeneous medium, is based upon the method of
wave splitting. > By wave splitting we mean the decomposi-
tion of u(z,¢) into up-going (in the positive z direction) and
down-going (in the negative z direction) waves. The impor-
tance of such splittings, in general, is that they lead to the use
of invariant imbedding techniques.*>® Given a slab of inho-
mogeneous medium and a splitting one can define an asso-
ciated scattering matrix. Invariant imbedding techniques
then allow one to write a complex system of differential
equations for the operator entries of the scattering matrix
whose differentiation is with respect to the location of one of
the planes of the slab. One can then deduce the behavior of
the reflection operators for small time which provides a con-
nection between up- and down-going wave fields and the
properties of the medium on the edge of the slab."? The re-
flection operator can then be used in both direct and inverse
scattering problems.

Various approaches®’!° have been tried for extending
the wave splitting to a planar stratified medium with
¢=c(z) and u = u(x, y,z,t). In particular, the approach
taken by the author'® was successful in giving rise to the
form of the reflection operator and the explicit Ricatti type
integral-differential equation and initial condition that the
kernel of the reflection operator must satisfy.

The starting point of the procedure for wave splitting'®
in a planar stratified medium was the development of an
upgoing and downgoing wave condition on a planar surface.
This was obtained using Huygen’s principle, or mathemat-
ically, by considering an initial value boundary-value prob-
lem for the wave equation in a homogeneous half-space. The
resulting condition obtained for up-going and down-going
waves on a surface z = const is given by

z,teR, (n
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u= i%ouz, (2)
where
H v = —ff "(x"y”'"R/c")H(t~£)dx'dy'.
LS 27R Co
€))

(Here, the -+ ve and — ve signs refer to the up-going and
down-going waves, respectively.)

This condition was then applied to decompose a solu-
tion u(x, y,2,t) of the wave equation in a stratified medium
into up- and down-going components by setting

u=u"4u, ui(x,y,z,f)=’1'(”i*z/é')’ 4)
2 gz

where the operator % is the same as %", with ¢, replaced by

¢(z). The required system of equations satisfied by the com-

ponents ™ and u~ was obtained by first rewriting the wave

equation in vector form

2Ll sy L)
ol Tl ar—a2 — a2y oflu]” @

and then transforming the system from one involving the
dependent variables u, u, to one involving the dependent
variables ™ and u ™. The resulting system took the form

+ +
dz lu u

where the matrix operator W is diagonal in a region where
¢ = const. This system was subsequently used to obtain the
equation for the kernel of the reflection operator %, where
U= =Rut.

In this paper, it is shown that the approach for splitting
developed previously'® can be successfully extended for a
nonplanar stratified medium in R®, where the decomposition
is in terms of incoming and outgoing waves. In doing so, a
number of key properties and identities of the time depen-
dent single and double layer potentials which are of impor-
tance by themselves are established. The associated reflected
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operator that can be obtained from the resulting splitting is
not investigated here.

A brief outline of the paper is as follows. In Sec. II,
conditions for outgoing and incoming waves across the sur-
face .# in a homogeneous medium are obtained by consider-
ing the associated initial value exterior and interior problems
for the homogeneous wave equation. The conditions involve
the time-dependent single layer and double layer potentials
and their normal derivatives. Operators R, :, N, & are intro-
duced that are associated with the potentials. In Sec. III,
certain identities for these operators (which are needed in
the splitting) are derived. The decomposition of a solution of
the homogeneous wave equation into outgoing and incom-
ing waves across % is then defined in Sec. IV. This definition
is extended to the case where the medium is no longer homo-
geneous but is (nonplanar) stratified. In Sec. V, the exis-
tence of the inverse operator ! is shown. This operator
plays a key role and is necessary for the factorization of the
wave equation in Sec. VI, where the generalization of the
planar stratified splitting given by Eq. (6) is extended to a
nonplanar stratified medium in R3. In Sec. VII, simplifica-
tion of the splitting by dimensional reduction is given for two
special nonplanar geometries. The details are presented for
the more difficult case of the circular cylindrical geometry.

The following notation will be used in the remainder of
the paper. Henceforth x and y will denote points in R>. Here
G, is a simply connected open region in R*> bounded by a
(Lyapunov) C? surface .#. The surface . will either be a
closed surface if the domain G, is bounded or of infinite ex-
tent if the domain G, is unbounded, but in either case it will
have no edges. Examples of the former are spheres, ellip-
soids, and of the latter are cylinders, planes. The surface %
does not need to be convex. The associated exterior domain
R>\ G, will be denoted G.. The unit normal on .% directed
outwards from G; to G, is given by n, withd /dn, andd /dn,
being the corresponding normal derivatives at the points x
and y on . When a function f(x, y) of the two variables
occurs, then the notation V, £, V, f is used to denote the
gradient with respect to y and x, respectively.

Ii. CONDITION FOR OUTGOING AND INCOMING
WAVES ON A SURFACE .~ IMBEDDED IN A
HOMOGENEOUS MEDIUM

Huygen’s principle is employed to obtain the conditions
for incoming and outgoing waves across a surface % in a
medium with constant velocity c¢. These conditions [a gener-
alization of Eq. (2), derived for a plane surface . ] will take
on the form of a linear relationship between  and the normal
derivative du/dn on .. The outgoing wave condition will be
obtained by considering the exterior initial value problem

1 9%
Vzu—??=0, xeG,, t>0, (7a)
u=u,=0, xeG,, t=0, (7b)

where either u or du/dn are specified smooth C 2 functions on
&, which vanish for ¢<0. System (7) can be placed in an
integral formulation using the well-known Kirchhoff’s for-
mula,? valid for xeG,, £>0,
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R 1 JR
9t = = = — ’t__
v == [ el -2)

X [u(y,t - £) + _R_ u:(}’,f - 5)]] day’
¢ ¢ ¢
(8)
with R = |x — y|.

Then taking the limit as xeG, - x,€.%, and employing
the jump condition for the double-layer potential,'>'* the
following result is obtained:

(I+ Mu + Ru, =0, xe, (€))

where the operators It and R are defined as follows:

Rwix,t] = —l-—f 1 u(y,t — E)H (t — ﬁ)day, (10)
27 c ¢
Bulst =5 [ r g vl 7)
R? on, c
+5w,(y,t_—)]f1(r— —Ii)day. (11)
¢ ¢ ¢

Here H(7) represents the Heaviside step function. The op-
erators R and M are compact operators'* with R mapping
C(KF)XC[0,T] into itself, and X mapping
C(£)xC'[0,T] into C(#) X C[0,T].

Relation (9) is the sought for outgoing wave condition
on .#. For the case where . is a plane surface, the operator
I vanishes and this condition becomes identical to Eq. (2).

An alternative or reciprocal form of the outgoing condi-
tion (9) is obtained by taking the directional derivative
ny' V. of both sides of Eq. (8), where n, is the unit outward
normal at the point x, on %, and then taking the limit as
xeG, »x,c.%. Taking into account the jump in the normal
derivative of a single layer potential, and the continuity of
the normal derivative of a double layer potential with differ-
entiable density'>' the resulting expression is given by

(I—Mu, +%u=0, xe#. 9)

The compact'* operator # mapping C(.%) X C'[0,T7] into
C(#) X C[0,T] is defined by

S

+ R w, (y,t — 5)]11 (t — ﬁ)day.
c 4

¢
(12)
The operator L is defined by
Lwlx,t]= lm n,V,0, (13)
x€G,— Xg€

L[ L
27 J» R? on

X [ (y,t — 5) + B—w, (y,t — ——)]H (t — —)da
c c (13
where
w(x,t)e{C*(F) X C?[0,0 ) Nw(y,0) = w, (y,0) =0}.
An alternative form for &, expressed in terms of the tangen-
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tial derivatives of a single-layer potential (which are contin-
uous across %) is given in Appendix A.

Equation (9') constitutes a condition equivalent to (9)
for outgoing waves on .. Conditions (9) and (9'), devel-
oped for a medium of constant velocity ¢, will be modified
later on to hold for a stratified medium where ¢ varies in a
direction normal to the surface ..

The incoming wave conditions can be obtained in a simi-
lar manner by employing Kirchhoff’s formula in region G,.
The resulting incoming wave conditions are given by

(—Pu—Ru, =0, xe, (14)
($+Mu, —Jw=0, xe5. (14"

Before employing these conditions to the factorization
of the wave equation into incoming and outgoing waves, a
number of identities involving the operators introduced in
this section need to be established.

IIl. IDENTITIES INVOLVING THE OPERATORS %, ¢, i, 8

A number of important identities among the operators
can be easily obtained by considering two different represen-
tations of systems (7a) and (7b), one of these being the
single layer potential type representation given by

u(x,t) = —f — v(y,t e —)da

and the other, the double layer potential type representation
given by

uinh) = lflez on,

o= )+ ol =l
4 [4 4

(16)

(15)

All that is required of the densities v(x,?) and p(x,¢) is that
v(x,t) = u(x,t) =0 for t<0, u, (x,0) =0, and that

v(x,)eC(F)XC0,00)
and
1(x,1)eC?( )X C*[0,c0).

Taking the limit as xeG, —»x€.% in expressions (15) and
(16) one obtains

u(x,t) =Ry, xe%, (17)

u(x,t) = (3 —Mp, x5 (18)
Taking the limit of the derivatives of expression (15) and
(16) (in a manner indicated in the previous section), one
obtains the resulting expressions for the normal derivative of
uon.?,

u, (%) = — (Y + RN, (19)

u,(xt)= —u, xef. (20)
Now insert expressions (17) and (19) into outgoing wave
conditions (9), to obtain

MR-—RV)v=0 21
Since v(x,t) is an arbitrary function of C(.¥) XC'[0,)
{vanishing at ¢ = 0), we immediately obtain

x5,
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MR=\N. (22)

This first identity is fairly obvious and can be easily veri-
fied by substituting in the appropriate expressions for the
operators R, M, and N into Eq. (21). In a similar manner,
the insertion of expressions (18) and (20) into Egs. (9)
yields the following:

- =R, (23)

Since ju(x,) is an arbitrary function of
CH 7)Y X C?*[0, ) we immediately obtain

I—-M=R (24)

Other identities can be obtained, such as the following:

(- —-2R)wv=0, (25
however, this will require stronger conditions on the density
v(x,t). Since we will not be needing this particular result, we
will not pursue it, other than to mention that when the sur-

face .~ is a plane, the operators It and  vanish, and the
resulting identities reduce to

RL=LR=F, 7 a plane, (26)

a result obtained in the previous paper.'°
In addition to the above identities, we need to consider
the “normal derivative” of the operators R and I given by

R,u =i (Ru), 27
an

émnu=i- (Mu), (28)
an
with «(y,t) as a function of y being defined on .¥ only.

To obtain a precise form for the operators R, M, , it will
be assumed that .7 is a member of a nested family of surfaces
and a curvilinear orthogonal coordinate system (£,,£5.£5)
can be chosen so that the surface % is given by £, =£9
(constant).

Let the points x and y on .% have corresponding curvi-
linear coordinates (&,,£,,63) and (£1,£5,64) withé, =&

= £9. The element of area do, is given by

do, =h3h; dé; dEs, (29)
where |, h;, h} are the metric coefficients at the point of
integration y. The metric coefficients at the point x will be
denoted by 4,, h,, h; (without primes).

A function u(y,t) defined only on . X [0, ) depends
only on the transverse coordinate £ 5, £; only and has the
form u(£5,£45,1).

Letting

F=(1/2mR)Bsh3u(E 5.6 3,0 — R /e),

the operator R can be expressed in the general form

Ru = j j FEE bl p(E L ELEDMES dEL,
=§; =§0 With 8/6n = (l/hl)a/agh then

—fjljg:dgzdgs

[ s

$4

where £,

(30)
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Since
dR | OR = (n, —n,)- (x—y)’
on, dn, R

it is seen that the indicated differentiation in expression (30)
does not produce a higher order or worse singularity. It im-
mediately follows on employing the relations

F 1 1 4R
an, 27 R? an,
X[u(y,t—£)+£u,(y,t—R)]h; [
c c
o _ 1 1 4R
n, 27 R? dn

X [u(y,t - 5) + R u,(y,t - 5)]h 2R3
[+ c (4

+1u(t )ahh3
2Ry c 8n,’

that

R,u= —Sféu—im(’;—lu)

1

ad
§R —In(h’h})]}. 31
* [“ag; nihs ”] G

hy
Initially, the procedure for obtaining %, u is the same as
for obtaining R,u, however we require that
u(y,t) = u(f;,£4,t) beatwice differentiable function of the
transverse variables £ ; and £ 4. As was done for Ru, Mu can
be placed in the form

o =jff("(fvfzés),y(s‘i,s‘é,fé )A€ dE S,

where £ | = £, = £ with
f= hz h} JR
20RZ b} 9

s By Rufesain-)

and then M, u is given by
hr
(At S
n}'

Here the approach dlﬂ'ers in that the integrals (with the
point x on %) are replaced by the corresponding integrals
with xeG, and followed by taking the limit as x approaches
a
L Jag d'.
ny

f,
X€G,— x€ ff( 1’
G 3 l

The limits exist and is continuous (no jump discontinuity
across % as will be shown). It is immediately seen that the
limit of the first integral is £u, hence we have

. —-J
M, u — = lim (—) (33)
51"5‘1) 277-hl
where
39 J. Math. Phys., Vol. 29, No. 1, January 1988

1= [ [ i esesn-)

Rulerg30-%) aalg/f]dfzdgs (34)

The above integral is evaluated in Appendix B where it is
shown to be

-JL3
u(y,r)] do,,

X | Viu(y,
[ Tu(yT) 287'2 T=t—R/c

where V2 is the transverse Laplacian given by

v 1 [i(h,h3 a)+ 3 (h,h2 a)]
T— -_— - —_— _——— .
hihohs W06\ hy 96,/  FE;\ hy OE,

(36)

(35)

Combining terms we finally have

smu=2u+lm(h;[v2,—i"_2 u). (37)
" h, c? 9t?
Using the above results, the following lemma is easily
proved.
Lemma: Let D be an open domain in R? containing .%,
and u(y,t)eC*(D) X C*[0, ), and let u(y,t) = O for 1<0.
Then on .7,

Lu —mi’-‘-———(zm +§Ra—“)
dn n on

=—§Rh—l(V2u lau)
1 ¢ ar?

Proof: This immediately follows upon using the rela-
tions

(38)

3( au)
Mu + R —
on ut an
hi )814 (hi 32“)
=2R (ﬂﬁ ?R,, _— ER b ’
A T e TG, e
d%u  A3lnh,h, du
VZ 273 =V2 ,
T4+ on? + dn  On “

and the identities for M, and R, given by Eqgs. (31) and
7).

IV. DECOMPOSITION OF WAVES IN A HOMOGENEOUS
AND STRATIFIED MEDIUM

The decomposition of waves into outgoing and incom-
ing waves across a closed surface . imbedded in a homo-
geneous medium can now be defined

= [u—ému——i}t— (39)

on

‘~— u+§IRu+§R—
on

(40)

Lemma. If u satisfies the wave equation in a homogen-
eous medium characterized by an open domain DeR? con-
taining the surface ., then u can be decomposed into outgo-
ing waves ¥ and incoming waves 1, by the relation

u=u"+u". (41)
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Proof: Since the decomposition given by Eq. (41) is ob-
vious, the critical thing is to establish that # ™ is an outgoing

wave across .%°. (The corresponding result for 4~ is then
similarly established.)
Since
+
23+ M+ +2m 2
on
> du
= (] ~THu — MR —
on
_g{_(g)z )_gz_‘?__(mﬁ‘i)
on on
du d a ( du )]
=R¥qWw-N——— — R —1],
[ an " T P

using relations (22) and (24), it follows from identity (38)
that because u satisfies the wave equation in a homogeneous
medium, that

(I+Mu™ +9%ézi—=0
on

which is the outgoing wave condition (9), thus proving the
required result. [ ]

The concept of the decomposition into outgoing and in-
coming waves will be extended to a stratified medium, the
stratification being described by a set of nested closed non-
overlapping surfaces, with the velocity ¢ being constant
along each surface. Employing a curvilinear orthogonal co-
ordinate system (£,,£,,5,) the stratification will be explicitly
specified by setting ¢ = ¢(£,).

The extension of the incoming and outgoing wave con-
cept to a stratified medium will be done in a manner similar
to previous work, '® namely by first thinking of the stratifica-
tion as a set of thin homogeneous layers of finite thickness.
Then the outgoing and incoming wave conditions (9) and
(14) and decomposition (41) is applied in each homogen-
eous layer. Finally, the layers are allowed to have infinitesi-
mal thickness. What this implies is that the operators &, I,
N, & will be modified for a stratified medium by requiring the
surface % specified by coordinate £, = €9 (constant), in
which case ¢ = ¢(&,) (¢ remains constant along .%°). For
example, the operator R will be given by

1 1

— — — 0.
§Ru-—2ﬂ_ yRu(,t ) )da x€F (& =£7)

Since c is still constant along .7, the identities (22) and
(24), applied to surface integrals over ., will still hold. The
only change that will occur is in the normal derivative of the
operators R and M. With u(y,z) being a C? function in an
open region containing % and which vanishes for £<0, the
normal derivative of Ru is easily obtained to be

1 dc
9 Ruy=%, §R(h' ) 9wy (42
a (Fu) =8t,u + 4 ) T og B 4D

1

with

e

=—§Rfi, -——§R(tu,), (42')
4 4
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and R, given by Eq. (31). In a similar manner it can be
shown that

OMu) _gp yy L zm(h' )+—§mu, (43)
an h,
with
l dR ( R) ( R)
Mm, a st ——|H|t ——]d
“= 2w ' 3n, A ¢ c %

=Ly, — L), (43")
< c

and Ik, given by Eq. (37).

V. INVERSE OPERATOR ® !

It was shown in the previous paper'® that the inverse
operator #~! exists when ¥ is a plane surface, and its ex-
plicit form was derived. Here we examine the question of
existence of #~! for the general case where .%* is a smooth
closed surface.

Since ® is a compact operator'* mapping
C(S )X C[0,T] into C(#) X C[0,T1], all that is needed to
be shown is that the null space of R is empty. It immediately
follows then R ! exists.

A brief outline of the proof that the null space of R is
empty, is as follows (for further details on this and some
more general results see Ref. 14).

Let v(x,0)eC() X C[0,T] be a solution of fiv=0.
Then set

L LR\ R 3
u(x,t) = vl B v(y,t . )H (t . )a‘ay, xcR°.
It immediately follows that u(x,#) is a solution of the mixed
problem in the exterior domain G, , satisfying the wave equa-
tion and the initial conditions #(x,0) = u, (x,0) = 0, xeG,,
as well as the Dirichlet boundary condition « =0on %. It
follows'! that the solution u (x,t) =0, for xeG,, ¢ > 0. A simi-
lar result can be deduced from the interior domain G,. It thus
follows from the jump condition [Ju/dn]+ = — 2v(x,1),
xe#, that v=0. The result is summarized as follows.

Lemma: The null space of R is empty, and R~ exists.

VI. FACTORIZATION OF THE WAVE EQUATION IN A
STRATIFIED MEDIUM

Here we will consider the factorization of the wave
equation

2
—zl—— a 12‘ —Vzu, xeD, t>0,
c*(5,) o (44)
u(x,0) =0, xeD, <0,

for a stratified medium [stratification described by surfaces
&, = £,(x, y,z) = const]. We will restrict ourselves to a re-
gion D so that the requirement 4 =0, for 1<0 can be imposed
here. Thus any sources producing the wave will lie outside D.
In practical applications, D would be a scattering body or a
portion of it.

The decomposition into incoming and outgoing waves
given by Egs. (39) and (40) will be expressed in vector form
as follows:
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ut u
= 45
[u‘] [au/an]’ (43)
where the matrix operator T is given by
1 [(3I—D]) —?R]
T=— . (46)
2 1+ R
The inverse of T is given by
T—n=[ ] 47
e wg-ml @D

The wave equation expressed in curvilinear coordinate
system (§,,£,,£5) will be written in the form

1 a (h2h3 3u) Oy, (48)
hihshsy I€, \ By €,
where
1 a3
= V2, 49
T (&) o9 T “49)

with V% being the transverse component of the Laplacian
given by Eq. (36). The combination of Eq. (48) with the
trivial identity
1 du__ 1 du
hihohy 9, hihohy 3,
results in the following system expressed in vector form:

s 5 kb our,
h h2h3 a§1 (h2h3/h ) (au/aé—[)
0 -2
- [ (hahs) ] [ “ (50)
Or 0 (hyhs/hy) (Bu/E,)
System (50) will be expressed in terms of incoming and
outgoing waves (changing the basis), by first inverting sys-

tem (45) to yield
Lcm ourao) = 7]
(1/h,) (3u/d&,) u=l’

then inserting expression (51) into Eq. (50), performing the
necessary differentiation, and then premultiplying the re-
sulting system by the matrix

(51)

to obtain
= (53)
= ]=7lic]:
with
0 aT~1
et [rroro,
h1DT —a/agl 1n(h2h3) a§1
(54)
Since it is easier to differentiate 7" than T !, the second term

of Wwill be rewritten using the relation

c?T -1 ar
6’5 1 FWARET
together with the following expression for the components of

the operator 97 /3¢ ,:

(@)u - hl{ER,,u n fc—sncu} ,
&, on
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&Ut) [ dc ]
=h,{ M, — I,
(agl “E Gy et

obtained from Egs. (42) and (43) with  independent of the
variable £,. This yields

_T(aT )
9,
(im +—ac2m) (SR +acm)
—lh a on 71
T2t ( de ) ( dc ) :
m, + - M R, R
"t on v

(55)

With the insertion of expression (55) into relation (54)

and employment of expressions (31) and (37) for the opera-

tors R, and IM,, respectively, the following simplified
expression for W is obtained:

L (F—-N
1 dc _mtc _mc] —1
2 —h, — n [ m, R T (56)

By using the identities [obtained from relations (22) and
(24)]

FEMRTFLT) +L=R[(FL])* + R
=213+ M),
— =R -DW —-Re] =
(58)
the first term in expression (56) can be multiplied out and
simplified to give

(57)
FLERREQIFED)

—ER“(%+EIR) 0

W=h‘[ —I(S—an)]
1 de 1
2651[ m, JT ' (59)

It is immediately apparent that when c is a constant, w
becomes a diagonal matrix, and the outgoing and incoming
waves are decoupled.

The results are collected on the following,

Theorem: For a stratified medium where the velocity c is
a function of the coordinate £,, the solution u of the system
(44) can be split up into incoming waves #~ [defined by Eq.
(40)] and outgoing waves u™* [defined by Eq. (39)] and
these components are related through the system

651[ ] h[ . 1(s+sm) m-‘(s?—me)][zt]

1 de —Ech '—ERC] T__l [u+]
2061 R R “1 60

System (60) is the sought for result in this paper. It
clearly demonstrates that the wave splitting concept can be
extended to nonplanar stratified medium.

To complete the analysis, the form of the reflection op-
erator % that relates the outgoing wave to the incoming
wave u~ by the relation #* = Zu~, and the equation satis-
fied by the kernel of the integral operator %, need to be
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established. For the one-dimensional problem, the form of
the reflection operator is given in terms of a simple convolu-
tion. However, for the planar stratified case developed in the
previous paper, ' it took on a more complex form involving
an operator and a convolution. This indicates that it would
be easier to ascertain the form of the reflection operator for
some special cases, and then generalize the results to a gen-
eral stratified medium. Thus before investigating the general
case, it would be more prudent to examine system {60) for
the cases of spherical or circular cylindrical geometry. In-
verse problems involving spherical or cylindrical stratified
medium can be reduced to one spatial-dimensional problem
when the scattered field is measured over a spherical or cy-
lindrical surface. Because this restricted class of problems is
of interest the associated reduced form of the wave splitting
will be presented here. This is given in the next section with
emphasis on the more difficult case of the circular cylindri-
cal geometry.

Vii. REDUCTION TO ONE-SPATIAL DIMENSION

For the case where the stratified surfaces have the prop-
erty that (J /3&,)In(h,h,) and h, are independent of £, and
£,, the multidimensional problem is reducible to a one-di-
mensional spatial problem. The stated conditions imply that
the surface ¥ (£, = const) has constant mean curvature
and that the coordinate curves orthogonal to it are straight.
Two such systems that have this property are (i) the spheri-
cal polar coordinate system (p,6,4), and (ii) the cylindrical
polar coordinate system (p,0,x;), where in both cases
5i=p

By noting that the above conditions have the explicit
form

hohy = f(£,)8(663), hy=h (&), (61)
the reduction to the one-dimensional problem is obtained by

multiplying Eq. (44) by 1/f(£,) and integrating over the
surface ./, yielding

1 ( S 80) 1 6' v (62)
hf(?é‘, h, 9€, c(§) 32
where
v=Cu, (63)
with the operator & defined by
Su= [ ulbabanp(Eaordts dts (64)
For the spherical polar case (where &, =p, h; =1,

f=p?), the factorization of Eq. (62) can be obtained direct-
ly by setting v(p,t) = w(p,?)/p thus reducing Eq. (62) toa
one-dimensional wave equation involving w(p,?) for which
the factorization is well established.!? Of more interest then
is the case of cylindrical polar coordinates (where &, =p,
hy = 1, f=p). The corresponding factorization for cylindri-
cal polar coordinates (p,6,x;) is obtained from Eq. (60) by
operating on both components of this system with the opera-
tor &. To get the appropriate form for the factorization, we
need to examine the expressions of SRu, SMu, SR~ 'u, etc.
Rewriting expression for the operator R in the form
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Rulx,1] =Cf f 5c(t Olelt—s) = R) ————Lu(y,s)do, ds,

where R = |{x — y| with x and p bemg points on the surface
S (p = const) and do, =p d6, dy,, it is seen that with
g=1in expression (64) that

e [ [ [, 2z

It is shown in Appendix C that

—R) dax] 4PS) 4y ds.
p

f 2@ =R) 4y —kpnE®D, (65)
R 27R
where
_[@e/mK(©E), 0<t<2p/ec,
o) = {(4p/m)1<(1/§), 20/c<t, (66
with
§=(ct/2p), (67)

and K(£) is the complete (Legendre) elliptic integral of the
first kind'®:

mo=f L (68)
o y(1 — ) (1 =¢%%)

It follows then that

SRu = Reu, (69)
where

Ro = J: k(p,t — 5)v(p,s)ds. (70)

Note that the kernel k(p,#) has a logarithmic singularity
when ct = 2p. N

The inverse of the operator % can be easily obtained for
the time 0<t < 2p/c by differentiating the equation

Rv=w,
with ¢ to give

v(p,t) +f —k, (p,t —s)v(p,s)ds ——@.
c Ot

Since this constitutes a Volterra integral equation of the sec-
ond kind with continuous kernel (0<#<2p/c), it can be
solved by iterations to yield

v=+§1 L%
c ot
= 2. 1 dw 2p
= — DS ——, Ot<T—,
ngo( )"(9) ~ <t<=
where
~ t
»‘{Dv=f —l-k.(p,t—S)v(p,S)dS- (71)
b ¢
Thus it follows that
—a+5 1L o2 (72)
c ot ¢
The form of the operator & R~ can now be obtained by

operating on both sides of the identity R §R 'y = u with &,
employing relation (69) to glve §R S R~ 'u = Gu, and final-
ly inverting to obtain S R~ 'u = #-1Gu. This yields the re-
lation
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SR'=R"'e. (73)

The evaluation of & It follows the same way as for & R.
From Eq. (11), ©&Mu can be written in the form

@S)Jtu=f J- [mz(p,t-—s)u(y,s)
S Jo

+ > milpt = ), )] %ds do,,  (74)

where

6(Ct—R)de, j= 1y2,

(75)

which are evaluated in Appendix C [see Egs. (C3) and
(C4)]. Using these results Eq. (74) can be expressed in the
following:

c 1 OJR
m; ,t = — —_—
(01 27 J» R/ dn,

&Mu = f m,(p,t — 5) [v(p,s) + (t —5)v,(p,s) ]ds,
’ (76)
where
v=Gu. an

For the class of functions u#(p,#) such that u(y,0) =0,
expression (76) can be integrated by parts to give

STy =2ifzv=f m(p,t — $)v(p,5)ds, (78)
(4]
where
a
m(p,t) =2my(p,t) +t o my(p,t).
This is evaluated in Appendix C as
m(p,t) = (c¢/mp) [K($) + 5K '(§)], O<t<2p/c, (79)

with £ given by Eq. (67).
Finally, the operators &R, and &%, can be obtained.
From Eqs. (42'), (69), (70) it follows that

GR.u= f (=3 k(p,t — s)v, (p,s)ds,
b ¢

which, on integrating by parts, yields for functions u(y,t)
that vanish at ¢t = 0,
&R.u = (2p/c)Dv, 0<r<p/c,
where v is related to u by Eq. (77). This implies then that
&R, = (20/0)MG. (80)

The following additional result follows from Eqgs. (43') and
(78):

em, =M., (81)
where
Eﬁtcv = lj {mp,t —5)
¢ Jo
+ (¢t —)m, (p,t — 5) }v(p,5)ds, (82)

for 0<t < 2p/c.
The factorization of the reduced form of the wave equa-
tion [Eq. (62)] in cylindrical polar coordinates can now be
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obtained directly by operating on components of system
(60) with &. Setting
vt =6ut, vt=6u",

the resulting factorized equations are

2T sl
g =1 0 RS-l
13 % %Hw]
*3 ap[—ar —sllo-]’
where

A= — B, + /PR3 + ),

B=— D, — /) TR — D).

The splitting given by Eq. (84) is extremely useful for
inverse problems involving cylindrical geometry (even when
the incident wave is produced by a point source). What is
needed is the form of the reflection operator relating the
outgoing wave to the incoming wave, and the equation for
the kernel of the reflection operator. This will be done in a
subsequent paper where in addition the reflection operator
will be employed to solve a class of inverse problems.

(83)

(84)
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APPENDIX A: ALTERNATIVE EXPRESSION FOR
[wv[x,t]

To obtain an alternative form for &, the integral Q [giv-
en by Eq. (13’)] will be written in the form

= * . w(y’t‘)]
0= Hen o, v [2D ] g0,

wheret* =¢t— R /c. (A2)
With w(x,t) a twice differentiable function such that
w(y,0) =w, (»,0) =0, it can be shown that for xeG,,

(AD)

*
v.o=| H* -vv‘”—(”—l]d. A3
=2 _L *)(n,-V,) x[ 27R o, (A3)
This is reduced using the identity
wt*)
. 221

ot * it *)
=nyv§[_”%)_] - Vxx(n,xvx[w ~ D

(A4)

and the fact that the first term on the right-hand side of Eq.
(A4) is nw, ()t*)/ (c’R) whereas the second term takes
the form

*
V. X {n,XV, [L—U-(y];—t)-] — %ny X [Vyw(y,r)],z,.}.

These are combined with expression (A4) and the resulting
expression is inserted into the integrand of Eq. (A3). Using
Stoke’s theorem (over the closed surface %) to eliminate
one of the terms, the resulting expression for V, 0 becomes
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n,w, (yt*)do,

H(t*)
A\ =
=@ L» 2mRc?

—vx [ HUD

» 2R

n, X[V, wym)], ... do,.
(A5)

Then taking the limit as xeG, »xe.%, it follows from
Eqgs. (13) and (AS5) that

H(r*
Lwix,t] = y—br(—Ré%no'nyw,, nt*ydo, —ny'V,
*
HUY) o 1V, 0], e do,.
» 2mR
(A6)

The second term involves the tangential derivatives of a
single layer potential that is continuous across .. This can
be reduced further by an approach similar to that used by
Gunter."

APPENDIX B: EVALUATION OF THE INTEGRAL /

From Eq. (34) the integral J can be expressed in the
form

[ s

where

(B1)

x=u(§;,§s,t—5)+5u,(s‘;,s‘;,t—-’i). (B2)
c C 44

The integral expression for J can be reduced to
f” 3 (hshsal/R) hihs
X !’ ’ ’ + ’
951 95 hi

() bl

With the point xeG,, we have V?(1/R) = 0, yielding the
relation

hshj
(PP hiiwi(L). e

)]dgs dg;. (B3)

g1\ ki &}
where
h’hl h'kl
hihhiV =2 ( AL )+ 5,( L ‘3,).
s\ hy 95;) 5\ hy 6}

Employing expansion (B4), the first integral in the integral
(B3) can be integrated by parts twice yielding

LR e )
R i

There is no contribution from the end points since the
surface % is closed.
It can be shown by differentiation that

(B5)
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Vix = {V%u(y,f)

1 d%u
—:ZZ( r ) 2 57,2 (y, )}r=t—R;’c

+§V%u,(§;,§s,t—§). (B6)
Using the relation
2 1 JR
=|V,R|*=1, (B7
,Z‘,(h JE! ) VR )

it immediately follows that expression (B5) reduces to

I

1 3% } do
2 87'2 r=t— R/c v
One can immediately take the limit as xeG, -xe.%, ie.,

gl"§?~

APPENDIX C: EVALUATIONS OF KERNELS k{p,), m(p,f)
The kernel k(p,t) has the form [Eq. (65)],

5(ct — R)
k ,t - _— d X
1) L’c 2R 7

where the integral is over the cylindrical surface g = const,
with R the distance between two points x and y on the sur-
face. Choose the coordinate system so that y has cylindrical
coordinates (p,0,0) and x cylindrical coordinates (p,8,x,),

{Vzru 0,7

(B8)

R?=x% +2p*(1 — cos 8). Thus setting p(8) = 2p sin(8/
2), one obtains
k(p,t):—fj M o dx, do
=gy —————5("‘_’” dR d6
T Jo Jp(&® ‘ZR2—p(9)2
2pC H(Ct‘P(B)) 46.
© V(et)* - p(9)*
Set & =ct/2p, sm(¢9/2) &7, then
ve _
k(p,) = f: Hct(1 — 7)) .
0

V=9 (1 - ¢
This can be expressed in terms of the complete (Legendre)
elliptic integral of the first kind'®

1
K =-j ! d
° V1 -9 (1 =¢ )
as follows:
_ [Qe/mK(E), 0<t<2p/c,
klpt) = {(4p/m)1<(1/§), 2p/e<t. (€D

The evaluation of m; (p,t),j = 1, 2 from Eq. (75) follows the
same way as for k(p,?). Note that in cylindrical coordinates
the extra factor in the integrand becomes
1 R _n0—x) p(l—cosh)
R~ on, R’ RI
Thus the expressions for m; (p,t) can be reduced to
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1 _ 2
my (o) =Lf Aletd =4, (c2)
mp Jo \/?1_172)(1_;2172)
my(p,t) = ctm,(p,t). (C3)

The integral on the right-hand side of Eq. (C2) is just the
elliptic integral'® D({) when £ <1 and £ 73D(1/£) when
£ > 1. These in turn can be expressed in terms of the elliptic
integral K and its derivative, giving

my(p,t) = # [K(E) + (£ — V/OK'(D)], 0<t<2p/e,
(C4)

= ¢ IKAA) + (16— DK (1/8)]),
g 2p/c<t. (C5)
For 0<t < 2p/¢, it follows that
m(pt) = 2my (o) +1 % ma (o)
= (c/mp)[(E2 = DK " + (4 — 1/O)K' + 2K].

Using the second-order differential equation satisfied by K
(represented by a hypergeometric function), this reduces to

m(p,t) = (c/mp) [K({) +{K'(6)]. (C6)
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Dirac’s theory of constraints is used to derive the Hamiltonian structure of the modified and
fifth-order Korteweg—de Vries equations. A transformation to “physical” variables is
performed on the canonical structure and is shown to be equivalent to the Dirac bracket.

I. INTRODUCTION

Hamiltonian descriptions of nonlinear hydrodynamics
have received considerable attention in the literature in re-
cent years.? This is primarily due to the realization that
canonical variables are not essential for a Hamiltonian de-
scription. In conventional or canonical Hamiltonian forma-
lisms, the vector space of functions in the Poisson bracket
(PB) comprise a Lie algebra. Furthermore, the equations of
motion are given by the Liouville equation, which conserves
the density in the canonical phase space.

It is, however, possible to construct PB’s in terms of
physical variables (which are not canonical} which also sat-
isfy the Lie algebra axioms of antisymmetry and the Jacobi
identity. The equations of motion are still derived from a
Liouville equation in *““physical” space. As distinct from the
canonical PB, the cosymplectic tensor is no longer constant,
but depends on the physical variables.

It is difficult to ascertain who introduced these general-
izations first, since it appears that generalized Hamiltonian
descriptions of this kind were developed independently by
Birkoff,> Born and Infeld,* Pauli,’ and Martin.® Without
doubt, however, the “resurgence” in generalized Hamilto-
nian descriptions, particularly in field theory, is primarily
due to Gardner’ and Morrison.®

Gardner, using a decomposition of the field into normal
modes, derived the generalized Poisson bracket (GPB) for
the Korteweg—de Vries (KdV) equation, which describes
weakly nonlinear dispersive waves for a variety of systems.”
This then led to interest in the Hamiltonian structure of oth-
er integrable nonlinear evolution equations. In particular it
provided a basis for the work by Fadeev and Zakharov'® who
show that canonical transformations of the action-angle
type, for the Hamiltonian structure, gives the scattering data
in the inverse scattering transform method. "

Morrison® presented the GPB for the Maxwell-Vlasov
system, while Morrison and Greene'? presented the GPB for
magnetohydrodynamics. Since this work, most other plas-
ma hydrodynamic models have been cast into GPB form.
The various approaches used to derive these GPB’s may be
found in Ref. 1. There are essentially three approaches. The
first® proceeds by guesswork but it is clear that the Jacobi
identity must be verified. The second" proceeds by group
theoretic methods which uses the moment mapping of coad-
joint group actions of a particular Lie group, which is the
configuration space for the system. The third method'* is via
adirect change of representation from a Hamiltonian system
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to a noncanonical system. In this latter approach, the ca-
nonical variables are replaced by the physical variables of the
system. We call this approach the direct approach and it
provides a straightforward procedure to derive the GPB for
systems that possess a canonical Hamiltonian structure. For
the KdV equation and its generalizations, this procedure is
not so easy, since the Lagrangian for these equations is singu-
lar, and thus invalidates the usual Legendre transformation
procedure for going from a Lagrangian to a Hamiltonian
form. Thissingular behaviorimplies |3 °L /dg;4;| = 0, where
L is the Lagrangian density and the g, are the generalized
coordinates.

Dirac'® was the first to consider how canonical Hamil-
tonian formalisms are modified for singular Lagrangian sys-
tems. The basic motivation was for quantization and is very
important in the canonical quantization approaches to grav-
ity'® and relativistic action at a distance theories.'” The basic
idea behind Dirac’s mechanics is to introduce multipliers
into the Hamiltonian (which includes the usual canonical
part). These multipliers imply the existence of constraints
among the canonical momenta. By requiring that the con-
straints be preserved in time, the Lagrange multipliers may
be determined and used in the Hamiltonian. However, at this
stage, the constraints cannot be used in the PB until equa-
tions of motion have been determined. Dirac introduced a
new bracket, the Dirac bracket (which is in fact a GPB),
that avoids this restriction and reduces the problem to the
physically relevant degrees of freedom. Such a construction
is necessary for a quantization procedure.

Nutku'® has used the Dirac procedure to derive the
Hamiltonian for the KdV equation. He did not, however,
discuss the Hamiltonian structure of the KdV equation. This
has recently been done by Lund'® and by Bergvelt and De
Kerf.?° In this paper we will use the Dirac theory of con-
straints and derive the Hamiltonian structure for the modi-
fied KdV equation and the next member in the KdV hierar-
chy, the fifth-order KdV equation. This is accomplished in
two ways. First, we derive the Hamiltonian structure from
the Dirac bracket. Second, as an alternative method, we de-
rived the same results by the direct approach and without the
need of the Dirac bracket.

il. DERIVATION OF THE HAMILTONIAN
The modified KdV equation is given by®
u, + 6utu, +u,, =0, (n
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and may be derived from the variational principle
8I =0, I=f$dxdt. 2)

The Lagrangian density .# is given by

where we have defined u = ¢, . It is clear that the canonical

momenta is
L 1
== MR 4)
Dy = 54, 2 —é

50 we cannot express the field ¢ in terms of the momenta.
Equation (5) is therefore a constraint on the system, so to
derive a canonical Hamiltonian structure we have to use the
Dirac theory of constraints.'>?! The Hamiltonian density
7 defined by H = 7 dx, is

H=p, b — L = —tu+iul. 5

The fifth-order KdV equation is**

u, + 30u*u, + 10uus, +20u, u,, +us, =0.  (6)
This equation may be seen to follow from a Lagrangian den-
sity given by

L =14 6. +56: +16% — 56, 4L . €]
The canonical momenta is again given by Eq. (4), while the
Hamiltonian density is clearly

H' = —jut + Suul — il . (8)

Ill. CONSTRUCTION OF THE DIRAC BRACKET

In the Dirac procedure, every first or second class con-
straint introduces a Lagrange multiplier y; into 7 via

%D-d‘!’+z,y, s 6]

i=1
where r is the number of constraints while the C;’s are the
constraints such as Eq. (4). In our case we have

Ci=p, — 10, . (10)
Preservation of constraints imply
¢, ={c,#}=0, (11)
where
64 6B 64 OB
{4 ,B} = f(—-—-m - ——-»-)dx, (12)
8¢ op, op, 8¢

allows the determination of the y,’s. To derive Egs. (1) and
(6) from Hamilton’s equations requires the use of Egs. (9)
and (12), but we cannot use the constraint equations, such
as Eq. (10), until the Poisson bracket operation is per-
formed. On the other hand, to use the simpler canonical
Hamiltonian density 57, we have to replace Eq. (12) by

{4 ,B}* = {4 B} — J-dwdv{A c.yp-YcC,B}, (13)
where D ! is defined via
[# DD 52 = 8,480~ 2) (14)

and
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D,, =1{C,.C,}. (15)

For the modified KdV equation we have
a

D, = —3‘;6(" =¥,
so Eq. (14) implies

D! = —ie(w—v), (16)
where £(x) =sgn(x). Equation (13) is then

d 6B
A4 *= |dx' 17
4@ 8w} f &;(x ) dx Su(x’)’ an

which is the desired noncanonical Poisson bracket. The
equation of motion for u is

_ 0 &x

6‘x du(x)’

where 57 is given by Eq. (5). Since the constraints are the
same for the fifth-order KdV equation, Eq. (6) follows from
Eq. (18) where 57 is now given by Eq. (8).

u, ={u}* (18)

IV. THE DIRECT APPROACH

Let us recall a few basic notions from Hamiltonian me-
chanics.?® If we denote the canonical variables p, and
g:(i=1,..,k) for some dynamical system by «", where
= 1,2,...,2k, then the Poisson bracket may be written as

dA HB

A Sw”

where £*¥ is the antisymmetric tensor. If 4 and B are trans-
formed into 4’ and B’ by o* —2* then

{4(0),B(@0)} =" — (19)

A4'(z) =A(w), B'(z) =B(w),
so Eq. (19) becomes
ummnwmfﬁ (20)

where the cosymplectic form 7" i3 no longer constant and is
given by

™ ()={z'2}.
More generally, for functionals of p and ¢, Eq. (20) becomes
64 6B

A(a),B dx d; 21
{4(a),B(a)} = fx x6 o "6a,-(x') (21)
with
0,={a;(x),a;(x"}. (22)
If A(a) = a; (x), the evolution of the a’s is given by
8%
a; Zf X' Oy (x,x' )6a )’ (23)

since da;/ba; (r') = 6(r —r'). We wish to consider the
transformation from (¢,p,) — (4,,p,).

The only nonzero element in O is {4, ,p¢} and is given
by

{¢.ps}=— b—i—,&(x —x').

Using 4 = ¢, and & given by Eq. (5) or Eq. (8), Eq. (23)
becomes

(24)
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i‘:{u:%})
where
64 3 6B
AB}=|———dx,
(4,5} du dx bu *

which is just the Dirac bracket we calculated before. It is
clear that Eq. (24) is nothing other than D,,.

V. CONCLUSION

In this paper we have derived the Hamiltonian structure
for the modified KdV equation and the fifth-order KdV
equation by two methods. First, the Dirac theory of con-
straints was used from which we calculated the Dirac
bracket. This noncanonical, or generalized, Poisson bracket
was shown explicitly to be the bracket that would be ob-
tained by a simple variable change from the more conven-
tional canonical Poisson bracket.
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A new integrable nonlinear integrodifferential equation (NIDE) is proposed. This equation
may be interpreted as 2 model equation for deep-water waves. The N-periodic and N-soliton
solutions for the equation are constructed by means of the bilinear transformation method.
These solutions have the same structure as that for the Benjamin—-Ono equation which
describes internal waves in stratified fluids of great depth. Furthermore, it is shown that the
motion of the positions of the poles of solutions is related to certain solvable finite-dimensional
dynamical systems described by first-order nonlinear ordinary differential equations. The
discussion is also made on a more general NIDE that may be interpreted as a model equation

describing nonlinear waves in fluids of finite depth.

I. INTRODUCTION

Recently, much attention has been paid to integrable
nonlinear integrodifferential equations (NIDE’s) of both
physical and mathematical interests such as the Benjamin—
Ono (BO) equation,'> the intermediate long wave (ILW)
equation,®® the sine-Hilbert equation,”'! and some other
related NIDE’s.>'!3 In this paper, we shall propose a new
NIDE that exhibits exact N-periodic wave and N-soliton so-
lutions. The equation that we consider here reads

u, —Hu, —uu, +u, f u, dx+u, =0, u=u(xz),
i (1.1a)
with
Hu(x,1) =in w4, (1.1b)
T Jow y—X

where the operator H is the Hilbert transform {the symbol P
in (1.1b) stands for the Cauchy principal value] and the
abbreviations ¥, = du/dt,u, = du/dx,andu,, = J*u/dt Ix
have been used. Equation (1.1) includes both the definite
and indefinite integrals and in this respect Eq. (1.1) is quite
different from the known NIDE’s mentioned above. We
note that Eq. (1.1) is reduced to the following model equa-
tion for shallow water waves introduced by Hirota and Sat-
suma'*:

u,—u,xx—uu,+u,f u dx+u, =0, (1.2)

provided that the H operator is replaced formally by an x
derivative. Mathematically, this formal derivation is entirely
analogous to that of the Korteweg—de Vries (KdV) equation
from the BO equation. Physically, a new NIDE (1.1) may
be interpreted as a model equation that describes nonlinear
waves in fluids of great depth.

In Sec. I1, we analyze Eq. (1.1) by means of the well-
known bilinear transformation method'>'® and construct
the N-periodic wave and N-soliton solutions. The latter solu-
tions stem quite naturally from the long-wave limit of the
former solutions. The initial value problem for a linearized
version of Eq. (1.1) is also solved exactly in the last part of
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this section. In Sec. III, it is shown that the motion of the
poles of solutions presented in Sec. II is closely related to
certain solvable finite-dimensional dynamical systems de-
scribed by first-order ordinary differential equations. It then
follows from the integrability of Eq. (1.1) that solutions for
the dynamical systems are determined by solving algebraic
equations of order N. This remarkable fact implies an aspect
of the integrability of the dynamical systems related to Eq.
(1.1). In Sec. IV, we generalize Eq. (1.1) to a more general
NIDE that is reduced to Eq. (1.1) and Eq. (1.2) in the deep-
water and shallow-water limits, respectively. This equation
may describe relevantly nonlinear waves in fluids of finite
depth. The N-soliton and some rational solutions for the gen-
eralized NIDE are presented and subsequently we show that
the NIDE is related to a solvable finite-dimensional dynami-
cal system. In addition, the two limiting procedures, namely
the deep-water and shallow-water limits, are taken for both
solutions and a dynamical system obtained here. The results
are consistent with corresponding solutions and a related
dynamical system for Eq. (1.1), in the deep-water limit and
those for Eq. (1.2), in the shallow-water limit, respectively.

Section V is devoted to the conclusion.

Il. EXACT SOLUTIONS
A. N-periodic wave solution

First, we focus our attention on a real and finite period-
ic-wave solution of Eq. (1.1) and seek it in the form

u=i-—(%ln (,{*f) fe =fy (60,

where f, (f_) is a complex analytic function with zeros
lying only in the lower (upper) half complex x plane. The
dependent variable transformation (2.1) is the same as that
used for the BO"? and the ILW® equations. It then follows
by using the property of the H operator that

Hi= -2 s, 1.
dx

Now, substituting (2.1) and (2.2) into Eq. (1.1) and inte-
grating once with respect to x, Eq. (1.1) is transformed into
the following bilinear equation for f, and f_:

2.1

(2.2)
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(iD,+D,D,+iD)f, f_ =0, (2.3)

where the integration constant has been taken to be zero and
the bilinear operators D, and D, are defined by the relation

D;‘D;"f+f—
=(i__f9_)"(_<9___0_)"’
gt oJt'/ \dx .Ox

XFr (x8) f_(x',t")

(n,m=0,1,.). (2.4)

t’ : :
Applying the standard procedure in the bilinear trans-
formation method'>'¢ to Eq. (2.3), we have found the fol-

lowing N-periodic wave solution of Eq. (1.1):

/.
U= — k; +t————-1n( +) (2.5a)
ng a. f
_ )
fo= 3 e[ 3wl +8)+ S pndy]. @0
#=01 j=1 j<t
[+ =f* (*: complex conjugate), (2.5¢)
& =ki(x—ait—x) +£° (j=12,.,N), (2.5d)
a;=(1—k cothg;)~', &,/k;>0 (j=12,..,N),
(2.5¢)
exp 4, = (a; — a,)z — aya;(a;k; — a,k;) (k; — k) ‘
(a8, — a;)* —aya,(a;k; + a;k)) (k; + k)
(2.5)

Here, 2, _,,; denotes the summation over all possible com-
binations of £, = 0,1, £, = 0,1,..., uy = 0,1, () means the
summation under the conditionj </and k;, ¢1, Xo;,and & [
(j= 1,2,...,N} are real constants.

For N = 1, the solution (2.5) is written explicitly in the
form

(2.6)

___ktanh, (ﬁ N o)
1 +sech ¢, cos £, \k; ’

which represents a real and finite one-periodic wave solution
of Eq. (1.1). Except for the phase velocity a,, the functional
form of (2.6) coincides with the periodic solution of the BO
equation presented by Benjamin'’ and Ono.'® Note that in
the BO case, a, = k, coth ¢,.

B. N-soliton solution

The N-soliton solution is easily constructed by taking
the long-wave limit of the N-periodic wave solution (2.5).
To show this, we set in (2.5d),

=7 (j=12..0), (2.7)
and take the long-wave limit k; -0 (j = 1,2,...,N) with the
phase velocities a; (j = 1,2,...,N) keeping finite values. It
then turns out that
2(a; +a;)a;a,

A, =
' (aj’—a{)z

’ kik; + O(k}). (2.8)

Introducing the expansion (2.8) into (2.5b), one finds, in

the long-wave limit, the explicit expression of the N-soliton
solution of Eq. (1.1) as follows:

u—za—ln(j;*)
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(2.9a)

f=det M. (2.9b)
Here, M is an N X N matrix whose elements are given by
i(x —a;t —xo) +a;/(a; — 1), forj=k,
k= 1/2 : (2.9¢)
[2(a; +ay)aa, ]/ (a; —a,), forj#k,

and the phase velocities are restricted by the conditions
a;>landa; #aq, forj#k (j, k= 1,2,..,N). It is interesting
to note that the N-soliton solution of the BO equation

u, +2uu, + Hu,, =0, (2.10)
is expressed in the form*!¢
*
u -t—-——ln(f ) (2.11a)
ax f
f=det M, (2.11b)
with an N X N matrix M given by
~ i(x—at—Xxy,)+ 1/a,, forj=k,
]k=[ AN A / (2.11¢c)
2/(a; —-a,), forj#k,

where d@; (j=1,2,...,N) are positive constants such that
é; #a, for j#k and Xy (J= 1,2,...,N) are arbitrary phase
constants. Therefore we see that the N-soliton solution of
Eq. (1.1) has the same structure as that of the BO equation.
The one-soliton solution is readily derived from (2.9)
with N = 1. It takes a Lorentzian profile as
1 T a,> l).

u= 2b1 <b‘ —
a, —
(2.12)

(x —at — X))+ b2

The amplitude and the velocity of the soliton (2.12) are giv-
en, respectively, by 2(a, — 1)/a, and a,. Hence one can ob-
serve that the amplitude approaches a constant value 2 in-
definitely when the velocity becomes large while it
approaches zero in the limit of a, —» 1. Asymptotic behavior
of the N-soliton solution (2.9) for large time is easily ob-
tained following the same argument as that for the BO
case. "' The result is expressed simply as a superposition of
N independent algebraic solitons as follows:

N 2b,

J
x01)2+b2
[bj =aj/(aj - 1), (2.13)

This asymptotic expression shows that no phase shift ap-
pears as the result of collisions of solitons in contrast to colli-
sions that take place between the KdV solitons. Thus we
have presented the second example of the one space-dimen-
sional algebraic N-soliton solution that is real and finite over
all x and ¢. The first example is, of course, that of the BO
equation.!

U ~
t~tow ;=1 (X —

aj>l].

C. Solution for a linearized equation

Here, we consider the initial value problem for a linear-
ized version of Eq. (1.1), namely

~Hu, +u, =0, 2.14)
with the boundary condition #(x,t) -0 as |x| - 0. If 4 (x,1)
is represented in the form of the Fourier transform

u(x,t) = JW v(kyexpli(kx — wt)]dk, (2.15)
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we obtain the dispersion relation

wo=k/(1+ 1k}, (2.16)
with the aid of the formula
o ikx
—l-Pf =ik (2.17)
T Jew X {k |

It is interesting to note that for small k, (2.16) behaves like
o=k—klk|+O0(k?). (2.18)

If we retain only up to the second term in the expansion, the
expression (2.18) coincides perfectly with the dispersion re-
lation of the following linearized BO equation

u, +u, +Hu, =0. (2.19)

This fact may suggest the suitability for interpreting Eq.
(1.1) as a model equation which describes nonlinear wave
propagations in fluids of great depth. In comparison with the
dispersion relation of Eq. (2.19), Eq. (2.16) is well behaved
for a wide range of the values of k, in particular for large k
and hence Eq. (1.1) may be more relevant than the BO equa-
tion itself as a model equation for deep-water waves.

Now, the unknown function v(k) appeared in (2.15) is
determined from the initial value «(x,0) as

v(k) = —wa u(x,0)e ** dx. (2.20)
2r J-

Substituting (2.16) and (2.20) into (2.15), we obtain a gen-
eral solution of Eq. (2.14) as follows:

u(x,t)=lJ.m fw u( »,0)
r -l

xexpli[k(x —y) — (1+ |k |) ™'kt 1}dk dy.
(2.21)
To investigate asymptotic behaviors of (2.21) for large
time is an interesting problem. But we shall not be concerned
with this problem here and the details will be reported else-
where.

lll. DYNAMICAL SYSTEMS RELATED TO EQ. (1.1)

In this section, we consider the dynamical systems relat-
ed to Eq. (1.1). The relationships between integrable nonlin-
ear evolution equations and solvable finite-dimensional dy-
namical systems have been studied extensively by many
authors.’®-? The basic idea due to Kruskal'? is to investigate
the time evolution of the positions of the poles of solutions of
nonlinear evolution equations. In the following, we show
that Eq. (1.1) is related to certain solvable finite-dimension-
al dynamical systems. The periodic and nonperiodic dynam-
ical systems are treated separately.

A. Periodic dynamical system

We first consider the periodic dynamical system. As
easily seen from (2.5a)—(2.5¢), it is possible to express the
periodic wave solution (2.5) withk; =k (j= 1,2,...,N) in
the form

u= i-a— ln([—'*), (3.1a)
dx f_

- Y2 [k

fo= H —sin —(x—xj) s X =xj(t), (3.1b)
j=1 k 2
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fo=r*, (3.1¢)
where x; (j = 1,2,...,N) are complex functions of ¢ whose
imaginary parts are all positive, i.e., Im x; > 0and x; #x, for
J#k (jk = 1.2,..,N). The functions x; represent positions
of the complex poles of the periodic-wave solution (2.5)
with k; = k (j = 1,2,...,N). In order to find the time evolu-
tion of x;, we substitute (3.1) into Eq. (2.3), use the trigono-
metric identity

cotAdcotB= —1— (cot4d —cotB)cot(4d —B), (3.2)

and then equate the coefficient of cot[k(x — x;)/2] zero.
The resultant equations for x; are written in the form

[k(xj —Xx;) ]

: kI
x,.=1—i7 Y (% +X;)cot 5

I=1
)

N L — x*
+i§ S (% +J't}")cot[k(x,2 x! )]

=1
(_]= L2,...N), (3.3)

where the dot appended to x; and x; means the time differen-
tiation. One can also obtain from the coefficient of
cot[k(x —x?)/2] the complex conjugate expressions of
Eqgs. (3.3). For N=1, Eq. (3.3) reads

x, =1+ k(Rex,)coth(k Im x,), (3.4)
and this equation is readily integrated to yield the solution

x;=(1—kcothg,) 't +xy, + id,/k. 3.5)

Substituting (3.5) into (3.1), we recover the one-periodic
wave solution (2.6). For general N, on the other hand, Egs.
(3.3) and their complex conjugate expressions constitute the
system of 2N algebraic equations for Xx; and x}
(j=12,..,N) and hence it is possible by using Cramer’s
formula to express these variables in terms of x, and x*
(n = 1,2,...,N) in the form

5=F (j=12..N), (3.6)

together with their complex conjugate expressions, where
the F; are uniquely determined functions of x, and x}*
(n=1,2,...,N). The explicit functional forms of F; will not
be written here. The system of equations (3.6) consists of
quite complicated first-order nonlinear ordinary differential
equations and hence it could not be solved analytically in
general. Nevertheless, in the present situation, one can ob-
tain explicit periodic-wave solutions of Eqs. (3.6). In order
to clarify this statement, we compare the expressions
(2.5a)~(2.5¢c) with k; =k (j=1,2,....,N) and the expres-
sions (3.1a)-(3.1c). It then follows from (2.5b) with
k; =k that

f_ =c0eikNx+cleik(N— l)x+ s 1

=CO[ZN+ ((,'I/C‘O)ZN_1 + e +c0—l]

(z=¢€*),

(3.7)
where ¢; (j = 1,2,...,N) are known functions expressible in
terms of ¢ and various constant parameters. Consequently,
the exp(ikx;) are determined by solving the algebraic equa-
tion of order N, f_ =0, with f_ being given by (3.7). In
other words, this result reveals an aspect of the complete
integrability of the system of equations (3.6).
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B. Nonperiodic dynamical system

Next, we investigate the nonperiodic dynamical system.
The time evolutions for x; (j = 1,2,...,N) are derived quite
naturally by taking the long-wave limit, k-0 in Egs. (3.3).
The equations corresponding to Eqs. (3.3) are written in the
form

I T W LY
=1 X; —xz 1_1xj—x;"
(O

The solutions for this system of equations are readily found
by solving the algebraic equation of order N, f= 0, where
is given by (2.9b) with (2.9¢). Finally, it should be re-
marked that the dynamical system related to the BO equa-
tion (2.10) is completely integrable and it is expressed in the
form**

N

=23

=1 X —X
=+

(j=12,..N).

N
+ 2
= x; —x}F

(3.9)

IV. GENERALIZATION TO MORE GENERAL NIDE

In this section, we generalize Eq. (1.1) to a more general
NIDE that is reduced to Eq. (1.1) in the deep-water limit
and to Eq. (1.2) in the shallow-water limit, respectively, and
construct the N-soliton solution together with some rational
solutions for the NIDE. We also investigate the motion of
the poles of the N-soliton solution to show that the general-
ized NIDE is related to certain solvable finite-dimensional
dynamical systems. Since the discussion is almost the same
as that for Eq. (1.1), we shall not enter into detail but pres-
ent only the main results.

A generalized version of Eq. (1.1) which we propose
here reads

u,—Tu,,-—uu,—}-uxf u, dx+u, =0, u=u(xz),

Tu(x,t) = LPJW [coth [M]
26 —w 26

—sgn(y— x)}u( »t)dy, (4.1b)

where & is a positive parameter that may be interpreted as a
depth of fluids. The T operator has been first introduced by
Joseph?*2¢ in the context of his NIDE which describes non-
linear waves in stratified fluids of finite depth. Presently, his
equation is known as the ILW equation.®® In the deep-water
limit 6 —» o the T operator is reduced to the H operator de-
fined by (1.1b) while in the shallow-water limit § — 0 it takes
the form

Tu =8u,/3 + 8%, /45 + O(8%). (4.2)

Therefore Eq. (4.1) is an intermediate version between Eq.
(1.1) and Eq. (1.2).

A. N-soliton solution

First, introduce the following dependent variable trans-
formation:

u—z—azln(;’:) (4.3a)
with

[t =f(x—ib,1), (4.3b)

fox0) =f(x +ib,1), (4.3¢)

where the complex function f (z,¢) is such that f (z — i6,r)

has no zero in the region 0<Im z<26. Then, it is straightfor-

ward by using the Cauchy residue theorem to show that
Tu, =

\ gzln(f+f_)+5 u.

Substituting (4.3a) and (4.4) into Eq. (4.1) and integrating
once with respect to x, we obtain the bilinear form of Eq.
(4.1) as follows:

[i(1—87)D, +D, D, +iD,]f, f-=0. (45)

In comparison with Eq. (2.3), Eq. (4.5) differs only from a
numerical factor in front of the operator D, and therefore it
may share many of the integrability properties of Eq. (2.3).

(4.4)

(4.1a) The procedure for constructing the N-soliton solution of
Eq. (4.5) is a routine work in the context of the bilinear
with the operator 7" defined by formalism.">'® The result is written compactly as follows:
i
(N)
fo=f% =3 exp Z B BT W0 +iv,) + 3 Mithen ,m] (4.6a)
©=0,1 n=1 Jj<m
with
6, =x—a,t—x,, (n=12,.,N), (4.6b)
a,=(1-86""+ 6“7/,, coty,)” !, O<y,<m (n=12,.,N), (4.6c)
— 2
exp B, 62(1 (e —a,) +3,8,(aY; — 0nVm) (V) — V) ’ (4.6d)
(1 =87, —a,)* + 3,8, (@ + @ V) (¥ + V)
l
where ¥, and x,,,, (n = 1,2,...,N) are constants. The explicit
one-soliton solution follows from (4.3a) and (4.6) with u = 8"y, siny, (4.7)
N=1as cosh[8~ 7’1(-7‘—‘11’“"‘01)]4‘0057’1
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which has the same functional form as that of the one-soliton
solution of the ILW equation.®®?* The interaction between
solitons is easily investigated by using the explicit formula
(4.6) for the N-soliton solution. The asymptotic form of the
N-soliton solution is simply expressed as a superposition of
Nindependent one-soliton solutions (4.7). In this case, how-
ever, the phase shift appears as the result of collisions
between solitons. Since the explicit formula for the phase
shift is easily derived following a procedure similar to that
for the ILW equation,® the result will not be presented here.

We can also obtain more general periodic solutions of
Eq. (4.1) which are expressed in terms of Riemann’s theta
function on the basis of the bilinear equation (4.5). The pro-
cedure for constructing solutions is almost the same as that
for the ILW equation.'%?” Details will not be discussed here.

Now, we consider the deep- and shallow-water limits,
respectively, of the bilinear equation (4.5) and the N-soliton
solution (4.6).

1. Deep-water limit: 6 - «

In this limit, Eq. (4.5) is reduced to Eq. (2.3) as expect-
ed. For the purpose of a limiting procedure for the N-soliton
solution (4.6), itis appropriate to introduce the positive con-
stants b, through the relations

¥, =m(1—5b,/8) (n=12,.,N). (4.8)
Then, it follows in the deep-water limit §-» o that

coty, = —&/mb, +7b,/36 + 0(57?), (4.92)

a,=b,/(b,—1) (b,>1), (4.9b)

2(a; +a,,)aa,,

B
(¢, —a,,)?

im

(%)2 +0(5~%. (4.9¢)

Substituting (4.8) and (4.9) into (4.3) and (4.6), one finds
that the N-soliton solution coincides perfectly with that of
Eq. (1.1), namely the expression (2.9). The one-soliton so-
lution (4.7) is of course reduced to (2.12), the one-soliton
solution of Eq. (1.1).

2. Shallow-water limit: 50

In this limit, it is appropriate to introduce the variables 7
and X by

t=(6/3)"%, (4.102)
x = (8/3)'/%%, (4.10b)

Then, it is easy to show by using the properties of the bilinear
operator, '

exp[ — 8 D, ] f(x)f(x) =f(x—ib) f (x +ib),
(4.11a)

D, D™f-f=0 (m=0,12,..), (4.11b)

that

D, f. f.=D,exp(~i6D,)f f

= —3iD; D, f f+36D; D} f- f+ O(&%),
(4.12)

DD, fo f-=367'D;D;f - f—3D; Di f [+ O0(8),
(4.13)

53 J. Math. Phys., Vol. 29, No. 1, January 1988

D, f. f-= —3iDif f+0(). (4.14)

We then have, by substituting (4.10) and(4.12)~-(4.14) into
Eq. (4.5), the following bilinear equation for /:

D;(D; —D; D% +D;) f f=0. (4.15)

The dependent variable transformation for u follows from
(4.3) and (4.10) with the aid of the expressions for small &,

fo=f—ibf, + 0(8%), (4.16a)
[ =f+i8f. + 0(8%), (4.16b)
as
82
u=65§2-1nﬂ (4.17)

Equation (4.15) with (4.17) is n(_)thing but the bilinear form
of Eq. (1.2) with the variables ¢ and ¥ instead of ¢ and x,
respectively.'
In order to derive the explicit functional form for f, we
introduce the positive constants p, by the relations
Y. = (38", (n=12,.,N).
It then turns out that
cos ¥, = [(38)%p, 17" — (36)'%p, /3 + O(5*),
(4.193)

a,=1/(1-pl), (4.19b)

B =f B Pa) (=34~ P pm+Pm)

(4.18)

T (B ) (= 34D+ 0, P + %)
(4.19¢)
and
N - () -
=3 cxp[ Y B Pa(E =yt —Xp,) + E F‘j/‘mBim] ,
p=0,1 n=1 j<m
[Fon = (3/8)%x,, 1. (4.19d)

The expression (4.19d) coincides perfectly with that given
by Hirota and Satsuma.'*

B. Rational solutions

Rational solutions of certain nonlinear evolution equa-
tions may be constructed by taking an appropriate limit on
soliton solutions.”®?® Owing to the freedom to choose an
arbitrary constant, x,,, in the present case, it is possible to
reduce soliton solutions to corresponding rational ones. In
this subsection, we shall briefly discuss some rational solu-
tions that are reduced from the one-soliton solution of Eq.
(4.1), namely the expression (4.6) with N = 1, The rational
solutions reduced from the general N-soliton solution will be
presented elsewhere.

Now, it follows from (4.6) with N == 1 that the one-
soliton solution of Eq. (4.1) is written in terms of the bilinear
variables as

f=1+exp[67 'y (x —ayt —xo1) ], (4.202)
with
a;=(1—=86""4+8'y,coty,), O<y,<m (4.20b)

The deduction of the rational solution from the one-soliton
solution (4.20) is possible if we choose the phase constant
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(4.21)

with a being a real constant, and then take a limit ¥, - 0. It
should be noted that the condition |a| > & is necessary be-
cause of the assumption in deriving (4.4). Indeed, a, be-
comes in this limit

X = — w8y~ ' —ia, |a|>6,

a; =14 (38)"'% + 01}), (4.22)
and hence f has an expansion for small 7,,
= =87y (x — t+ia) + O(). (4.23)

Substituting (4.23) into (4.3) and taking a limit ¥, -0, we
have a rational solution of Eq. (1.1) as follows:
u= —28/[(x —t+ia)®+ 8. (4.24)

The solution (4.24) is regular but complex for real ¢ and x.
We now consider the two limiting cases of § » « and § =0.

1. Deep-water limit: - «

In this limit, it is convenient to start from the expression
(4.20). Various limiting procedures are possible, which we
shall treat separately below.

(a) yy,=m(1—5b,/6), b >1.

In this case, it follows that

a,=b/(b;—1), (4.25a)
fo=1+exp[d 'y (x —a,t +i6 —x4)]
= —6 'r(x —at —xo —ib)) + 0(67%), (4.25b)
fo=r*, (4.25¢)
so that
U= i_a_ ln (f_+)
Ox I
2b, ( a, )
= b, = y (4.25d)
(x —ayt —x0,)> + b7 e —1

which is nothing but the rational one-soliton solution of Eq.
(1.1) already given by (2.12).

() yy=m(1 —¢,/8)/2 (¢,>0), xo,=miby; "

In this case, one finds that

a,=1+0("), (4.26a)
fo=m(x—~t—ic)/26 + 0(672), (4.26b)
fr=24+0(7Y, (4.26¢)

so that
= —i/f(x—t—ic), (4.26d)

which is a single pole solution of Eq. (1.1).
©) ¥, =B —¢\/8), B#u/2m, X =miby; .
In this case, following the same procedure as case (b),
we find a single pole solution (4.26d).

2, Shallow-water limit: 60

In this limit, we also take a—0. Then, introduction of
the new variables ¢ and % defined by (4.10a) and (4.10b),
respectively, into (4.24) yields

u= —6/(x —1)? (4.27)

which is a rational solution of Eq. (1.2) with the variables ¢
and x instead of £ and x, respectively. This fact can also easily
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be confirmed by direct substitution of (4.27) into Eq. (1.2).

C. Solution for a linearized equation

An appropriate linearized version of Eq. (4.1) may be
written as

u,—Tu,, +u, =0. (4.28)

The solution of the initial value problem for Eq. (4.28) with
the boundary condition # -0 as |x| — « can easily be con-
structed by employing the Fourier transform. The result is
expressed in the form

u(x,t)=—l—Jm F u( y,0)
2w d—w

xexp{i[k(x — y) — w(k)t ]}dk dy. (4.29a)
Here, w (k) is a dispersion relation for Eq. (4.28) given by
o(k) =k/[1—-6""+ k coth(kb)]. (4.29b)

In the deep-water limit 6 —» o, (4.29) is reduced to
wk)y=k/(1+ k], (4.30)

which is in accordance with (2.16), the dispersion relation
for Eq. (2.14). In the shallow-water limit § -0, on the other
hand, it becomes

ak)=1/(1+k?), (4.31a)
with the new variables @ and k defined by

® = (8/3)"w, (4.31b)

k= (6/3)". (4.31¢)

The expression (4.31) is just the dispersion relation for the
linearized version in Eq. (1.2) with the variables ¢ and X
instead of f and x, namely,

U; — Uiy +uz =0. (4.32)

The problem for investigating asymptotic behaviors of
(4.29) for large time will be left for future work.

D. Dynamical systems related to Eq. (4.1)

In this subsection, we derive the dynamical systems re-
lated to Eq. (4.1). The discussion almost parallels that for
Eq. (1.1) or that for the ILW equation.?**° In so doing, we
assume the bilinear variable f defined in (4.3) in the form

M
f=1] x—=x), [Imx;]>8, (4.33)
=1
where the x; are complex functions of ¢ and M is a positive
integer. The conditions |Im x;| >4 (j=1,2,...,M) are re-
quired because of the assumption for the analytical property
of f[see (4.3) and (4.4)]. Substituting (4.33) into (4.5) and
using partial fraction decomposition, we obtain the equation

f( I — )(x.-1)+25
j=1 x—xj+i¢5 x—xj—i¢5 /

X
X —x; +1i6 (x; —x;)(x; —x; — 2i8)

j=11=1
#£hH

1 1
x—x; —i6 (x; —x;)(x; — x; + 2i5) ]
X (x; + %) =0. (4.34)
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Then we have, by taking the coefficients of (x — x; + i6) ™!
and (x —x; —i6) ™" zero, respectively, the following sys-
tem of equations for x;:

M X, + %,

x=1-=20 , (4.35a)
’ = (x5 —x,) (x; —x, — 2i6)
(%)
M x; + X,
x;,=1—-25 7
/ ,; (x; — X;) (x; — x, + 2i8)
)
(j=12,..M). (4.35b)
Adding (4.5a) and (4.5b) yields
M X, + X,
x;,=1—46 / , (4.36a)
! = (g —x))% + 48
(%)
while subtracting (4.35a) from (4.35b) yields
M X; + X,
=0. (4.36b)
Igl (xj - xl){(xj - x1)2 + 46%}
(4 #)

Equation (4.36a) is a finite-dimensional dynamical system
with a constraint (4.36b) and it is closely related to the mo-
tion of the positions of the poles of solutions of Eq. (4.1).
The detailed analysis of Eq. (4.36) will not be done here.
Instead, we consider two limiting cases of § » « and 6 0.

1. Deep-water limit: 5

In this limit, it is appropriate to introduce the new vari-
ables %; (j = 1,2,...,M) by the relations®>*°
X =x,—i6, Imx;>6 (j=12,.,N), (4.37a)
X=x;+i6, Imx;<—8 (j=N+1LN+2..M).

(4.37b)

Hence X;, for j= 1,2,....N, lie in the upper half plane
(Im %; >0) and X, forj =N + LN +2,..M liein the lower
half plane (Im X; <0). Substituting (4.37) into Eq. (4.34),
we find, in the limit 6 — o,

N 1 N .7?—{-52,

> —|%—-1+i ¥ ——

,-=1x—xj =1 j'—XI
U#)

x; + X, M Lj + X%
XX, —14i = —i ~—— | =0,
l:j 1; X; — X l=§+l i — X1
()
’ (4.38)

whereupon we readily obtain by taking the coefficient of
(x—%)"" for j=12,.,N and that for j=N+1,
N +2,...,M zero, respectively,

N X +Xx M % 4k
G=1-iy 2Ty BEH
=1 X — X I=N+1X; —X;
(X))
(j = 192;'"’N)’ (4.393)
N X, +X Mo X 4+Xx
H=1-iy T4 ¥ L
=1 X; —X; I=N+1 X — X
(I #5)
(j=N+LN+2,...M). (4.39b)
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This system of equations is a dynamical system without any

constraint. If we take M=2N and Xy, , =X
(j=1.2,..,N), Egs. (4.39a) become
. N X +X NooX +XxF
}=1-i 3 +i’—~’+i _’+ L (j=12,..N),
.-=lxj_x1 =1 xj—xl
A+

(4.40)

and Egs. (4.39b) become the complex conjugate expressions
of (4.40). Furthermore, in the limit § —» «, we have from
(4.3) and (4.37)

u=i 7;9; ln([];) , (4.41a)
with

N
=Y (x—%), Im%>0 (j=12,.,N). (441b)

i=1

The system of equations (4.40) is identical to Eqgs. (3.8)
with the variables X; in place of x; which have already been
reduced from the periodic dynamical system related to Eq.
(1.1).

2. Shallow-water limit: 5- 0

In this limit, it is convenient to introduce the variables
and X defined in (4.10) and the new variables X, =(3/
8)'?x;, (j=1,2,.,M). We then immediately find from
(4.36)

& &
M x; + X,

4 =1 (X —%)?
(£
M X. 4+ X
Nth o, (4.42b)

< (% —%)° B
)
which is a dynamical system with a constraint. The depen-
dent variable , (4.3) now takes the form

az. -
u= 6551nf, (4.43a)
with
. M
f=3Y x—-%). (4.43b)
i=1

The system of equations (4.42) represents a dynamical sys-
tem related to Eq. (1.2) and the solutions may be construct-
ed from the N-soliton solution (4.19) of Eq. (1.2) by taking
an appropriate limiting procedure. The solutions X; thus ob-
tained are expected to have a form of algebraic functions of 7
and x. However, solutions u themselves constructed from X;
would become singular as seen from a rational solution
(4.27), for example, which has been reduced from a one-
soliton solution of Eq. (4.1). The situation mentioned here
would be the same as that for rational solutions of the KdV
equation.”® The detailed analysis of the system of equations
(4.42) will be dealt with elsewhere.

V. CONCLUSION

In this paper, we have proposed a new integrable NIDE
that exhibits the N-periodic and N-soliton solutions and
showed that it is closely related to certain solvable dynami-
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cal systems. The NIDE may be relevant as a model equation
that describes wave propagations in fluids of great depth.
Moreover, we have generalized our NIDE to a more general
one that is an intermediate version between our equation and
that of Hirota and Satsuma.’* The generalized equation may
also describe suitably wave phenomena in fluids of finite
depth.

In the context of the soliton theory, it is quite interesting
to derive the inverse scattering transforms (IST’s), the
Béicklund transformations, and an infinite number of con-
servation laws, etc., for these NIDE’s. In this respect, the
bilinear equations (2.3) and (4.5) may offer a proper start-
ing point for analyzing these problems since the systematic
method for constructing IST’s, etc., on the basis of the bilin-
ear equations has already been established considerably
within the framework of the bilinear formalism.'®

Finally, it is useful to comment on another type of inte-
grable model equations for shallow water waves proposed by
Ablowitz et al.! It may read in the form

o0

u,—u,xx—2uu,+uxJ. u,dx+u, =0. (5.1)

Although only the coefficient of the nonlinear term wu, of
Eg. (5.1) differs in comparison with Eq. (1.2), Eq. (5.1) is
never reducible to Eq. (1.2) by means of any scale transfor-
mations. If we replace the dispersive term u,,, by Hu,, , new
NIDE’s will arise. The method for exact solution developed
in this paper may be applied to these NIDE’s in order to
obtain various results corresponding to those presented here.
A number of problems proposed in this paper will be dealt
with in the near future.
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Formulations of the special theory of relativity in the Dirac or “space-time” algebra are
compared with those in the simpler algebra of 2 X2 matrices (“Pauli algebra”). The Dirac
algebra separates elements into odd and even multivectors, but this feature is not needed in
most practical calculations. As a result, Pauli-algebra formulations are just as powerful in most
cases. Furthermore, the new correction angle ¢, which Salingaros found with the Dirac algebra
to be required to describe the product of two boosts, is shown to be identically zero, and new

results for special boost combinations are derived.

I. INTRODUCTION

Clifford algebras have become popular tools in the de-
scription of relativistic physics.””” Such algebras deal with
multivectors which can be formed from linear combinations
of antisymmetric products of a set of basis vectors. Salin-
garos,>” a prolific proponent of Clifford algebras, has point-
ed out their advantages, especially the facility they allow in
making coordinate-free calculations of finite Lorentz trans-
formations. The space-time or Dirac algebra'? (see Sec. I11,
below), constructed from a set of four basis vectors on Min-
kowski space, seems the natural choice for applications in
relativistic physics. However, as we discuss below, the Dirac
algebra, with its basis of 16 independent forms over the real
numbers and with multiplication rules unfamiliar to most
physicists, is unnecessarily complicated for most calcula-
tions in special relativity. It can usually be replaced by the
Pauli algebra, which has a simple representation as the alge-
bra of 2 X 2 matrices.®

In a recent paper, Salingaros® used the Clifford algebra
of space-time (Dirac algebra) to calculate the product of
two boost transformations and to express the result as a
product of a net boost and a rotation. He claimed that his
Clifford-algebra techniques allowed him to derive an exact
result which differs by a rotation of the net boost direction
from the standard result as given, say, by Méller’ or Jack-
son.!? The standard result is usually obtained by calculating
velocities from coordinates related by a boost transforma-
tion, or equivalently, by boosting a four-velocity.?

In an erratum Salingaros® corrected an algebraic error
but still maintained that the physical predictions of the Pauli
and Dirac algebras are in disagreement. We show below that
the predictions of both algebras are identical for the product
of boosts, and that consequently, it is not necessary to ad-
dress the question of “which Clifford algebra correctly de-
scribes the physical Lorentz group.” °

The remainder of this paper is in three parts. First, in
Sec. II, we investigate constraints on the products of boosts
that arise from general symmetry arguments. Next, in Sec.
111, we relate the familiar algebra of 2 X2 matrices to the
Clifford algebra used by Salingaros®>~ and others’ and show
why, for practical calculations in special relativity, the for-
mer is nearly of equal power in spite of its much greater
simplicity. In Sec. IV, we use the simpler algebra to demon-
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strate the identity of the net boost velocity from the product
of two boosts to that found by directly boosting a four-veloc-
ity. This procedure is then shown to give results in complete
accord with those derived from the Dirac algebra. We also
derive the exact expression for the net boost when sand-
wiched between identical half-angle rotations [correspond-
ing to s in Eq. (40) of Ref. 5] in order to demonstrate the
symmetry properties predicted in Sec. II, and we show how
boosts may be combined to produce net boosts with no rota-
tion. The “inverse problem” for pure boosts, namely to find
the boost in terms of given initial and transformed four-vec-
tors or “six-vectors,” is solved as a further example of the
power of Pauli-algebra techniques in relativistic kinematics.
In the Conclusions (Sec. V), we summarize some of the evi-
dence concerning the relative usefulness of the two Clifford
algebras for applications in special relativity.

. SOME SYMMETRY PROPERTIES OF PRODUCTS OF
LORENTZ TRANSFORMATIONS

The group L', of restricted Lorentz transformations
includes both pure boosts B{w) and pure rotations R(£),
where the boost parameter w is simply related to the relative
velocity

v=w(tanhw)/w, w=|w, nH

induced by the boost and the vector angle { gives both the
magnitude )} = || of the angle of rotation and the direction
2 = /9 of the right-handed axis of rotation. The rotations
form a subgroup SO(3) of L, , but the boosts are not a
group in themselves because the product of two boosts, say,
B(w,) followed by B(w,), is equivalent to a net boost B(w)
followed by a rotation R (Q):

B(w,)B(w,) = R(Q)B(w). (2)

In this paper, unless otherwise specified, we mean active
transformations, i.e., of physical systems, rather than passive
ones, of coordinate frames. The two are related by changes of
sign in the parameters, but the distinction is not significant
for most of the arguments of this section.

Other decompositions are possible since it follows from
Eq. (2) that
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B(w,)B(w,) = [R(Q)B(W)R "' () ]IR(2)
=B(W)R(Q) (2"
= R(Q/2)B(w")R(Q/2), 2"

where R ~1(2) = R( — ) is the inverse of R({) and
where the parameters w' and w” are obtained from w by
rotations of £ and £2/2, respectively. The inverse transfor-
mation is

[B(wz)B(Wl)]"l =B(— wl)B( — W,)
=B(—w)R(— ). (3)

Spatial inversion changes the sign of the boost parameters
but not the direction of the rotation axis, so that Eq. (3)
becomes

B(w)B(w,) =B(W)R(— Q). (4

A comparison of Egs. (4) and (2') shows immediately that
once w has been determined as an analytic function
w(w,,w,) of w, and w,, W' is given by simply interchanging
the indices 1 and 2. Furthermore, the sign of & = Q(w,,w,)
should change when the indices indicating the order of appli-
cation of the component boosts are switched:

(52)
(5b)
Similarly, the comparison of Eq. (2”) with the inverse of its
spatial inversion,

B(w,)B(w;) =R( — Q/2)B(w")R( — £2/2), (6)

demonstrates, in addition to Eq. (5b), that w" = w" (w,,w,)
is symmetric with respect to the interchange w'«>w,,

w(w,w,) = w(w,w,),

Q(w,w,) = — Q(w,w,).

W (W,W,) =W (W, W,). (N

This constraint, for example, proves that Eq. (2") cannot be
satisfied when w” is replaced by the standard result s for the
net boost [Egs. (33) and (34) and (40) of Ref. (5) (before
correction in the Erratum) ], because s is clearly not sym-
metric with respect to the order in which the boosts are ap-
plied. In Sec. IV we derive exact results for w” and show that
the symmetry condition equation (7) is indeed fulfilled.
Another interesting way to combine boosts is to boost by
w,/2 both before and after a boost by w,. Assuming the re-
sult to be equivalent to a boost by w, preceded and followed
by a unique rotation of £,/2, we write, in analogy to Eqg.
(29,
B(w,/2)B(w,)B(w,/2) = R(£,/2)B(w;)R(£,/2). (8)

A comparison of Eq. (8) with the transformation inverse of
its spatial inverse gives
R(Q,/2)B(»;)R(05/2)

= R( — Q,/2)B(W;)R( — Q,/2). 9)
Consequently the rotation angle £2; must be zero and the
combination equation (8) must be a pure boost. The resuit is
also easily derived from a different approach within the alge-
bra of 2 X 2 matrices, as is shown in Sec. IV.
1Il. DIRAC ALGEBRA VERSUS THE ALGEBRA OF 22
MATRICES

In Refs. 4 -6 Salingaros used the Clifford algebra of
multivectors formed from products of vectors in four-di-
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mensional Minkowski space. The space-time algebra of Hes-
tenes' is equivalent. In this section we compare this algebra
with the simpler algebra of 2 X 2 matrices for calculations in
special relativity.® Of course, one’s choice of the “best” alge-
bra is largely a subjective matter of personal preference, but a
number of relevant facts can be ascertained. First, we must
briefly describe the algebras we want to compare. Only the
essentials needed to clarify our notation and comparisons
are included here. Further details about the Clifford algebra
may be found in Refs. 1-7.

From the four basis vectors, say e, ¢« = 0,1,2,3, of Min-
kowski space, one builds a basis of 16 independent forms
from all possible antisymmetric outer products e; Ae, - .
The 4 X4 Dirac matrices ¥ and their products provide a
representation of the basis forms, and indeed this Clifford
algebra is often referred to as the Dirac algebra’? . (Some
authors reserve the name Dirac algebra for the algebra with
32 independent basis forms resulting from the complexifica-
tion of our &.”) Any element of & is thus a linear combina-
tion with real coefficients of a scalar, the four basis vectors
e,, the six basis bivectors e, Ae,, the four pseudovectors
e, Ne, Ne,, and the pseudoscalar w =e;Ae,Ae,Ae,,
o*= —1.

The scalar, bivector, and pseudoscalar parts of an ele-
ment of & are said to be “‘even,” whereas the vector and
pseudovector parts are “odd.” The bilinear products of two
even or two odd elements is even whereas the product of an
even with an odd element is odd. The even elements of &
form a subalgebra & | which is isomorphic to the Pauli alge-
bra Z, the Clifford algebra of products of vectors in three-
dimensional Euclidean space.'~ The subspace & _ of odd
elements of & is not an algebra.

If the Euclidean basis vectors are written o, k = 1,2,3,
then the eight basis forms of & are {1, o, io, i}. The name
Pauli algebra originates from the simple representation of o,
by the Pauli spin matrices

! 0 2 O ’ 0 1

Since 1 = (§ §) and oy, k = 1,2,3, form a complete linearly
independent set of 2 X 2 matrices, Z is seen to be isomorphic
to the algebra of 2 X 2 matrices with complex elements, The
latter is undeniably simpler—but also more restricted—
than & because the number of basis forms is reduced by half.
It is also more familiar to most physicists because the ring
multiplication is given by the usual multiplication of 2 X2
matrices, and inner and outer products can be replaced by
the usual “dot” and “cross” products of vectors. For exam-
ple, the product of two complex vectors of the form a = a*g,,
(the summation convention is assumed for repeated indices
and underscores indicate 2 X 2 matrices ) gives

ab = a'b + iaXb = a-bl + i(axbh)*o,, (1)

where ab = ¢*b * and (aXb)* = €, a'b’ are the normal dot
and cross products.

Since the Dirac algebra comprises products of Minkow-
ski-space vectors, it at first appears the one best adapted for
work in special relativity. However, it can easily be shown to
be more general than usually needed. Elements of & can be
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separable mixtures of even and odd multivectors, but one
rarely needs such mixtures in practical calculations. The rea-
son is that physical quantities correspond to either purely
even or purely odd elements of &, and multiplication of
such elements together always yields again purely even or
purely odd elements.!! There is no need to accommodate
mixtures. By mapping even and odd parts onto the same
subalgebra, the number of basis forms can be halved.

As discussed above, the Pauli algebra and hence the al-
gebra of 2 X 2 complex matrices is isomorphic to the subalge-
bra & , of even elements of &. The vectors and pseudovec-
tors of Z _ can be mapped onto & by multiplying them by
€,: the e, component of each vector becomes a scalar and the
e, components, k = 1,2,3, become bivectors e, A\ e, , where-
as the e; A e, A e; component of each pseudovector becomes
a pseudoscalar and the other components become bivectors
¢; Ae,. Thus both odd and even parts of & can be mapped
onto & ., and hence onto & and onto the algebra of 2 X 2
matrices. Since the mapping is one-to-one for both the even
part and the odd part of &, the much simpler algebra of
2X 2 matrices has all the power of & in calculations which
do not require mixed even/odd elements.

The advantages of & (we will not usually distinguish
between & and its representation, the algebra of 2 X 2 matri-
ces) in comparison to the Dirac algebra stem mainly from its
relative simplicity, its explicit representation, and the famil-
iarity of physicists with the algebraic operations. One can
avoid the inner and outer products of &, whose symmetry
relationships to the basic ring multiplication (Salingaros’s
“vee” product™®) depend on the element types being multi-
plied. One also avoids a pseudoscalar which anticommutes
with vectors and pseudovectors. One gains a more direct
separation of four-space vectors into time and space compo-
nents, and in three-space, vectors are easily distinguished
from pseudovectors, which here (but not in & ) share their
familiar identity with axial vectors.

The algebra of 2 X2 matrices is also isomorphic to the
algebra of complex quaternions, and the advantages of ap-
plying such an algebra to problems in special relativity (as
well as for pure rotations) were discussed in print as early as
1910 by Klein and Sommerfeld.'?> Many authors®!3-'¢ have
contributed to the theory, including Salingaros and
Ilamed.'” When 2 X 2 matrices are used to represent “four-
vectors” of Minkowski space-time, say,

.§=XO1+§=Xol+xkgk, (12)
Lorentz transformations
x—x'=LxL™ (13)

are determined directly by unimodular 2 X2 matrices of
SL(2,C) which can generally be written*

L =exp[(w—i)/2]. (14)

If w = 0, the transformation is a pure rotation and the ma-
trix L = R is unitary, whereas if { = 0, the transformation
is a pure boost and L = B is Hermitian:

R(Q) =R *(— Q) = exp( —i©2/2),

(15)
B(w) =B *(w) = exp(w/2).
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Ifxand p = p,1 + p are any two four-vectors, the product of
one with the spatial reversal,'® say,

P=Pol D (16)
of the other gives matrices with still simple but distinct trans-
formation rules:

xp—LxL *L *3L = LyL, (17
where we have noted that the spatial reversal of L is also its
matrix inverse,

L= L~ (18)

Ones sees that the scalar part of x p is Lorentz invariant
(it corresponds to the usual scalar product of four-vectors)
and that the complex-vector (six-vector) part of x p, al-
though it transforms under rotation just like the vector part
of a four-vector, transforms distinctly under boosts. Angular
momentum, electric and magnetic fields, and the transfor-
mation parameters w and {2 themselves are parts of six-vec-
tors, and the 2 X 2 matrix formalism easily explains why they
transform differently under boosts than do four-vectors.
Clearly higher-order products of four-vectors can be formed
which transform either like four-vectors (odd multivectors)
or like a scalar plus a six-vector (even multivectors).
Further details and applications of 2 X 2-matrix algebra to
special relativity are given in Ref. 8.

Lorentz transformations in the Dirac algebra & are
quite similar in structure to those in 2 X 2-matrix algebra #,
but in & the form is exactly the same for all elements. Re-
call, however, that the multiplication rules for inner and out-
er products change when a vector is replaced, say, by a bivec-
tor, so that even though the form appears the same, the
results of Lorentz transformations can differ.

The bivectors of & correspond to the six-vectors of &,
but in & the bivectors and vectors are clearly distinguish-
able because they span nonoverlapping subsets of basis
forms whereas in &, because of the mapping of both &
and Z _ onto Z, they span overlapping subsets. Conse-
quently in Z, one must know whether a given spatial vector
is part of a four-vector (such as a vector potential) or part of
a six-vector (such as an electric field) in order to know its
transformation properties under boosts. However, this is a
familiar and rather trivial problem, since, as pointed out
above, there is no need in practice to superimpose even and
odd multivectors.

IV. NET BOOSTS

The algebra & of 2 X 2 matrices can be demonstrated by
deriving several relevant results. First, we show the relation-
ship between a boosted four-velocity and a net boost.

The four-velocity u in the rest frame has only a timelike
component. In units with the velocity of light ¢ = 1, it is

(19)

If the system at rest is boosted by B(w) [see Egs. (13)-
(15)], its new four-velocity is

u=B(w)1B*(w)=e" (20)

Thus one sees that the four-velocity is identical to the square
of the 2 X 2 matrix representing the corresponding boost. By

up=1.
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power-series expansion of e and applications of Eq. (11),
one obtains

u = 1 cosh w + w(sinh w)/w, 21
where w = (w'w)'/2 Identifying

y=coshw, u=yv=w(sinhw)/w, (22)
we write

u=yl+u, y=U+uH)"2=1-")""2 (23)

Now take a system with four-velocity u,
= B(w,)B *(w,) and boost it by B(w,):

u—u' =B(w)u,B*(w,)
=B(W;)B(wW,)B*(w,)B " (w,)
=B(w)B™ (W), (24)
where the net boost B(w') is related to boosts B(w,) and
B(w,) asin Eq. (2),
B(w,)B(w,) = B(w)R(Q). (2

Consequently, results for the net boost w’ or the correspond-
ing net four-velocity ¥’ =expw should be identical
whether one boosts a four-velocity or directly multiplies two
boost transformations. In particular, the spatial directions of
n’ and w’ should be the same.

The calculation is trivial in Z.® One notes from Eq.
(11) that three-vectors commute if parallel, and anticom-
mute if perpendicular. Therefore, splitting u, into parts par-
allel and perpendicular to w,,

W=y +uy, Uy =i, (25)
one finds
U ="y e =e(yl +uy) +uy,
= (1l + W)yl +yy) +uy,
= (Y2 +ueu))l + (Y +vouy) +uy. (26)

The standard results follow immediately when one equates
coefficients of the basis matrices 1 and gy,

Y =nr2+urly =y7,(1 +vpv,),
v v+ Y+ (1 =y DX (B,XY,)

V), =—=
1 14 1+vpev,
On the other hand, for the net boost which precedes the
rotation as in Eq. (2),

u=e*=B"*(W)R " (D)R(Q)B(wW)
=B " (w,)B " (w,)B(w,)B(w,)

= B(w,)u,B(w,), (28)

so that u, w,v, u, and ¥ can be obtained from «', w', v', w’, and
Y, respectlvely, simply by switching the indices 1 and 2 as
predicted by Eq. (5a).

The method of boosting a four-velocity to find the net
boost or velocity does not give the rotation angle @ of Eq.
(2) or (2’) but it does give correctly the magnitude and
direction of w and w’. The angle can be found directly by
solving Eq. (2) with the boost and rotation matrices of Eq.
(15),

(27a)

(27b)

e!;/Zezl/Z —e~ l'(_l/Ze!/Z. (29)
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From the exponential expansions
e¥? =1 cosh w/2 + w sinh w/2

=[2(y+ D] [( + D1 +u],

e='%2 =1 cos /2 — if} sin /2,
one obtains four equations, equivalent to the equality of Egs.
(12) and (13) of Ref. 1, which can be solved for w and Q.
The results, as shown, for example, by McFarlane'! and van
Wyk," give w fully consistent with Eq. (27) above, and yield
1 given by

(30)

a_ I+y+r.+y
2 R+ D+ D+ DIV a1
Q sin — Q_ U, Xty ,
2 R+ D@+ DE+ D7

These results for © were given by Hestenes' and McFar-
lane'* and are consistent with—but simpler than—Eq. (18)
of Ref. 5. They are most easily obtained after w is known by
equating scalar parts of and pseudovector parts of

e 02 = % 2p%/2p - w2

=27+ D@+ DEF+ DI
X[A+72)1+w] (1 +y)1+w]
X[(1+p1—ul. (32)

Hestenes' [see his Eqs. (18.27) and (18.29) and note a
sign error in Eq. (18.27)] derived his results from Dirac-
algebra techniques equivalent to those of Salingaros.

Within his erratum® Salingaros’s results are also in ac-
cord with the above analysis. However, he still argues that
the Dirac algebra gives physical results that differ from the
standard ones found, for example, by means of the Pauli
algebra. Indeed, he has derived a correction angle ¢ by which
the standard results differ from his own, and he has asserted
that generally ¢5£0. It is therefore important to stress that
Clifford-algebra techniques are used in Salingaros’s deriva-
tion only to establish the four initial equations resulting from
a comparison of his Egs. (12) and (13) and, equivalently,
those resulting from his Eq. (26). The rest of the derivation
uses only standard algebraic and trigonometric methods to
solve for the unknown rotation angle and boost parameter:
no techniques of Clifford algebra make any further contribu-
tion. Salingaros’s four initial equations are identical to equa-
tions derived from the Pauli algebra.

The equation given by Salingaros [Eq. (3) in his erra-
tum] does correctly give the additional rotation angle ¢ pre-
dicted by the Dirac algebra, but it is not difficult to show,
with Eq. (31) above and Salingaros’s Eq. (34), that ¢ =0 for
all combinations of V, and V,, Salingaros’s assertions to the
contrary notwithstanding. The results of the Pauli and Dirac
algebras are thus identical, at least for the product of arbi-
trary boosts, in conformity with their close relationship as
discussed in Sec. III.

The Pauli algebra can be similarly used to derive other
expressions in an efficient straightforward way. For exam-
ple, Eq. (6) becomes

e!,/Zenz/Z lﬂ/2e1 /2 tﬂ/2 (33)
Expansions like Eq. (30) give directly
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,r+1 ]1/2
w L+ D@+
X[+ Du+ (11 + Duy], (34)

where ¥ = ¥,%, + u,u,. The result (34) does display the
symmetry under exchange of indices 1«<»2 as predicted in
Sec. I1. To solve for u, = w;(sinh w;)/w, in the case of the
rotation-free combination of noncollinear boosts, Eq. (8)
may be written

e!3/2 — em/4en,/2en,/4 — e“*”e”l/z
+ (=% — 1) [2(y, + D]~ P, X (@, Xw,),

sinh w
u =w"

L (35)
which gives
2
( 2(vi + Dy + 1)
1 u u,
=—(1 +72+ )[ — +
U, 2( +Vi+v2+Y 74l 7t
s o 12
(27 o
Yi+1 72+ 1

The fact that the combination B(w,/2)B(w,)B(w,/2) isa
pure boost follows in the Pauli algebra simply from its Her-
miticity, since as mentioned above, all 2 X2 unimodular
Hermitian matrices represent pure boosts just as all 22
unimodular unitary matrices represent pure rotations.

As a last example to demonstrate the utility of the Pauli
algebra, consider the inverse problem'® of finding the boost
parameter W, or equivalently, the corresponding four-veloc-
ity u = exp(w), in terms of a given initial four-vector, say
r=1t]1 +r, and the given transformed result

(38)

wghse)re ry=tl+r, and ry =riit =r —r,. Since by Eq.
(

r—r=@w-"Dr,

r =§(W)I§ +(W) = 21/221/2 =£1 + ﬂl’

(39)

The vector part of 7 — r is parallel to u and consequently
determines + &, and hencealsor; and 7. Itis clear from Eq.
(38) that rj = ur, and therefore

(40)

We are able to divide by the matrix product r, 7 because any
23X 2 matrix times its spatial reverse is a scalar.

A similar solution exists when the given initial and
boosted quantities are six-vectors* such as the electromag-
netic field F = E + /B, which transforms under boosts as
follows [compare Eq. (17)]:

u=nrn/ng.

F=BwFB~'(w) =u?Fu~"?=F, +uF,.  (4D)
Since by Eq. (41)
F—F=(u-DF, (42)

+ # is normal to the plane in which the real and imaginary

parts of F' — F lie. [Should E’' — E and B’ — B be parallel,
one can show that +4 is parallel to
(E'—E)(E'+E) + (B'—B)(B' + B).] Then Eq. (41)
gives u as

F' —F)F FF
w=E 200 _ES '(43)
- F,-F, F,F,
61 J. Math. Phys., Vol. 29, No. 1, January 1988

V. CONCLUSIONS

We have shown that for most calculations in special rel-
ativity, the Pauli algebra Z is fully as powerful as the Dirac
algebra Z. The advantages of 7 over & are based on its
relative simplicity: it has only half as many basis forms and
all multiplication among elements can be expressed by famil-
iar multiplication rules of the 2 X2 Pauli spin matrices or,
equivalently, can be expressed in terms of familiar dot and
cross products of spatial vectors in three-dimensional Eu-
clidean space. The fact that restricted Lorentz transforma-
tions in Z take the simple SL(2,C) form is an added bonus.

Although the examples treated here have been restrict-
ed to relativistic kinematics, the power of & is even more
evident in electrodynamics.® In &, for example, Maxwell’s
four equations result trivially as the scalar, vector, pseudo-
scalar, and pseudovector parts of the field equation for the
vector potential 4. Furthermore, the analytic solution de-
scribing the motion of a charge in arbitrary constant electric
and magnetic fields is simpler to find in the Pauli algebra'®
than in the Dirac algebra, and the effect of the fields on the
four-velocity is easily seen to induce a well-defined Lorentz
transformation. General solutions for the motion of a charge
in a circularly polarized plane wave are also easily derived in
174 . 19

Of course it may happen that extensions, perhaps to
curved space-time geometries, may require a more complex
covering algebra, perhaps & or even a higher-order Clifford
algebra. Even then, the Pauli algebra should remain useful,
not only for calculations in flat space-time, but also as an
introduction to Clifford algebras, since it is the simplest non-
trivial example of a Clifford algebra over the field of complex
numbers.’
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The transverse behavior of a laser beam propagating through a bistable optical cavity is
investigated analytically and numerically. Numerical experiments that study the (one-
dimensional) transverse structure of the steady state profile are described. Mathematical
descriptions of (i) an infinite-dimensional map that models the situation, (ii) the solitary
waves that represent the transverse steady state structures, (iii) a projection formalism that
reduces the infinite-dimensional map to a finite-dimensional one, and (iv) the theoretical
analysis of this reduced map are presented in detail. The accuracy of this theoretical analysis is
established by comparing its predictions to numerical observations.

I. INTRODUCTION

When one observes physical systems with a large num-
ber of degrees of freedom, one frequently notices robust con-
figurations that remain spatially coherent even though the
temporal evolution of the system is chaotic.! Vortices in a
two-dimensional turbulent flow and cellular patterns in Ben-
ard convection are two examples of such coherent phenome-
na. For large-dimensional systems, which are usually de-
scribed by nonlinear partial differential equations, it is
extremely difficult to describe the spatially coherent, yet
temporally chaotic, solutions, theoretically and virtually im-
possible at present to capture solutions that are both tempor-
ally and spatially chaotic. In this series of papers we will
study an important physical problem—that of a laser beam
propagating through a bistable optical cavity—which ad-
mits a rather complete theoretical description of its chaotic
states. This problem is intriguing in that it is both techno-
logically important in laser optics (for the development of an
all optical means to process signals such as would be needed
in an all optical computer?) and theoretically important in
turbulence’ (as a tractable example of a spatially coherent,
temporally chaotic, nonlinear field).

Our goals in this first paper of the series are as follows.

(1) To describe in detail the results of our numerical
experiments in which we observe the (one-dimensional)
transverse structure of steady state fixed points of the laser
beam profile.

(2) To present self-contained mathematical descriptions
of (i) an infinite-dimensional map that models the situation,
(ii) the solitary waves that represent the transverse struc-
tures, (iii) a projection formalism that reduces the infinite-
dimensional map to a finite-dimensional one, and (iv) the
theoretical analysis of this reduced map.

(3) To establish the accuracy of this theoretical analysis
by comparing its predictions to the numerical observations.
In the conclusion of the paper we will indicate typical routes
the system takes to chaos as its fixed points become unstable.
However, detailed descriptions of these routes to chaos will
be deferred to a later paper in the series.

The paper is organized as follows: In Sec. II, we describe
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the infinite-dimensional map. This map is derived, from the
Mazxwell-Bloch equations, in Appendix A. In Sec. III, we
summarize properties of the map in the plane wave case. The
simple material in this section orients our entire study. In
Sec. IV, we describe in detail our numerical experiments in
which we investigated the (one-dimensional) transverse
structure of the field as it emerges from the optical ring cav-
ity. In Sec. V, we (i) define solitary waves, (ii) establish
numerically that the fixed points profile contains solitary
waves, (iii) develop a solitary wave projection formalism,
and (iv) use this projection formalism to reduce the infinite-
dimensional map to a finite-dimensional one. Details of the
projection formalism are presented in Appendix B. In Sec.
VI, we analyze the reduced map on solitary wave param-
eters, both analytically and numerically. In Sec. VII, we
present an analytical formula with sufficient generality to fit
the entire single fixed point, both its solitary wave central
peak and its shape in the outer regions (henceforth referred
to as wings). Finally, in the conclusion, Sec. VIII, we briefly
describe routes of the system to chaos as the system is further
stressed and the fixed points have become unstable. Some of
the results discussed within were reported earlier,”*~ to-
gether with our related works.%®

Il. DEFINITION OF THE MAP

The mathematical problem we study in this paper can be
stated concisely. We study an infinite-dimensional map,

Gn—l(.11)-'Gn(.’l)) (2.1)

for a function G, (x,z =1) defined by a sequence of initial
value problems:

ad 1 92
226, +~2_ G, +NG,G*G, =0, 2
i +f6x2 + N(G,G¥)G, (2.2a)
G,(x,z=0) =a(x) + Re*G, _, (xz=1). (2.2b)

Heren>1, G, =0, ( f,R,4,]) are given real parameters, and
a(x) is a given function shaped like a Gaussian with maxi-
mum A4 = a(0). Our goal is to find the behavior of the func-
tion G, (x,/) as n— oo.

The physical origin of this mathematical problem is as
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FIG. 1. Schematic of an optical ring resonator. A laser beam (Gaussian in
x) enters through a partially transmitting mirror H, propagates a distance
L, through a nonlinear dielectric medium, is partially transmitted for detec-
tion through the output mirror I while the remainder is fed back around the
circuit (via mirrors I, J, K, and H) and added to the input beam. Mirrors J
and K are 100% reflecting and serve only to direct the beam around the
closed loop. For the purposes of mathematical convenience in the present
paper, the return circuit is approximated by a simple linear phase shift.

follows: Consider a ring cavity as depicted in Fig. 1. A laser
beam enters this cavity, which is filled with a nonlinear di-
electric, emerges from it, and is brought back to the entry
point by a rectangular array of four mirrors. There it rein-
forces the pump field and together they reenter the nonlinear
medium. The goal is to predict the output field after many
passes through the cavity.

A sketch of the derivation of the mathematical model
(2.2) is given in Ref. 3; a more detailed derivation is given in
Appendix A together with references to the physical litera-
ture. In the mathematical model, (2.2a) describes the propa-
gation of the laser field down the nonlinear medium, while
(2.2b) describes the return of the field to the reentry point.
Here G, denotes the envelope of the electromagnetic field on
the nth pass through the cavity, a(x) is the envelope of the
input laser field, and x and z are coordinates in directions
transverse and parallel to the direction of propagation
through the medium. The parameter fis related to the Fres-
nel number which measures the amount of transverse disper-
sion or diffraction in propagation through the medium. The
dynamics of the return path is accounted for by the factor
Re”, which involves mirror losses (R < 1) and a phase shift

&
In this paper we study two nonlinear media, one with
“saturable nonlinearity”

N(GG*) = —1/(1 +2GG*), (2.3a)
and the other with “Kerr nonlinearity”
N(GG*) = —1+2GG*. (2.3b)

The latter is the first two terms in the Taylor series expansion
of the former for small values of GG *.
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The infinite-dimensional map (2.1) is the composition
of two maps—one, (2.2b), is a dissipative discrete map that
acts pointwise in x on the output G, _, (x,/) to produce the
input G, (x,0), while the second, (2.2a), is a conservative
nonlinear wave equation that transports the field down the
nonlinear medium. In our analysis we will utilize separately
properties of each of these two components of map (2.1).
For example, the nonlinear wave equation component will
filter the field into coherent spatial structures, while the dis-
crete dissipative map will select specific values for the ampli-
tudes of these spatial structures.

Ili. PLANE WAVE CASE

In this section we begin our analytical study of map
(2.2) by assuming the input field a(x), and therefore
G, (x,2), is independent of x. In this case the infinite-dimen-
sional map reduces to a two-dimensional one which is quite
tractable. We will use this reduced, two-dimensional map to
orient our study. (This x-independent situation is called the
“plane wave case’” because the wave fronts are planar, with
no transverse curvature; it has been studied by many auth-
ors, those in Ref. 9.)

When G, is independent of x, the partial differential
equation (2.2a) reduces to an ordinary differential equation
that can be integrated explicitly. We find

G, (z) = exp[ (i/2)N(G,G *)z]G, (0). (3.1)

Notice that G,G ¥ is constant, independent of z. Writing
g, = G, (0) and inserting (3.1) into (2.2b) yields the map

841 =T(g,.8%) =a+ Rexp[ilp+ N(g.g¥)/2)]g,.
(3.2)

The plane wave map (3.2) is a one-dimensional complex, or
a two-dimensional real, invertible map. Its inverse is given
explicitly by

gn = T_l(gn+l!g:+l)

cen| o 2
X (8,41 —a)/R. (3.3)

Since the map T depends upon g, g%, it is not analyticing,.
The map T works as follows (Fig. 2): First, the pointg =g,
is rotated through an angle 8 = (¢ + N(gg*)!/ /2) that de-
pends nonlinearly upon g; then the new point is moved along
aray toward the origin by a contraction factor R <« 1; finally,
the point is shifted toward the right by a positive real number
a. This geometrical description of the action of the map T, as
depicted in Fig. 2, makes the existence of fixed points plausi-
ble.

(8ny1 —a)(8Y,, —a)) !
R? —”

® @
FIG. 2. Complex g-plane sketch
@ showing that the action of the plane
Img| / T wave map is a composition of a(D ro-
/ 9 tation, Q) contraction, and ) trans-
/ lation [see Eq. (3.2)].
;
Reg
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The following physical argument also makes the exis-
tence of fixed points plausible. Dissipation is present in the
form of losses at the mirrors [which, by the way, is the only
loss mechanism modeled in map (2.2)]. Thus we expect
fixed points to result from a balance between energy lost at
the mirrors and energy injected through the constant pump
field “a.”

Mathematically, the presence of losses is seen by a calcu-
lation of the Jacobian of map T

aT, T,
17 Z) T, T%
|D,T| = det 8k S =——'—1—det[ ° 6]
T, 9Ty | 2lgl LTy THh
dg; 9
= R 2 < 1, (3.4)

where T= T, +iT;, g =g + ig; = |g|lexp(i8). Note that
|D,T| =R?<1is constant in g and dissipative.
Fixed points of 7" do exist. A fixed point g satisfies

g=T(gg*) =a+ Rexplild + N(gg*)!/2)]lg. (3.5)
This equation can be analyzed as follows:
=T(gg*)=¢+ N(gg*)!/2,

) 1—a/g)(l —a/g*) =R?
1= % =Re"= {é — a(,g;rg—i)—(g’")/ggl"g"-—1 2R cosT.
These two equations quickly yield a single equation for gg*,

cos I'(gg*) = 1(1/R + R — a*/Rgg*). (3.6b)
Using a root gg* of (3.6b) yields the fixed point
g=a/(1—Re"). (3.6¢)

Thus the fixed points are determined by (3.6b). These arise
intuitively as follows: In the absence of nonlinearity and mir-
ror losses, the cavity is described by the map

(3.6a)

8.+1 =a+expli(¢ —1/2)]g,.

The resonant response of this empty cavity is given by the
conditionexp[i(¢ — //2)] = 1;Eqgs. (3.6a) and (3.6b) con-
stitute the generalization of this phase match condition after
mirror loss and nonlinearity have been added to the system.
Qualitative insight into (3.6b) may be obtained graphically.
It is easiest to begin with the Kerr nonlinearity:

I=gg*, N()= —142I, T)=¢—1/2+11,
cos ' =1(1/R + R — a*/RI).

The situation is sketched in Fig. 3. Figure 3 shows several
points.

(i) The parameter /, a dimensionless measure of the
length of the nonlinear medium, primarily determines the
number of fixed points which increases as / increases.

(ii) In the situation depicted, there are three fixed
points. For smaller input intensity g% the curve
(R ~' 4+ R — a%/R]) rises faster and only one fixed point
exists. For larger values of ¢?, the same curve falls and only
one fixed point remains. Thus the fixed points as function of
a? take on the familiar “hysteresis” shape of Fig. 4.

(iii) The maximum possible switch-up intensity is
bounded by
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FIG. 3. Graphical construction to determine fixed points of the plane wave
Kerr map. For the case shown there are three fixed points located at the
intersection points of the two curves.
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While this switch-up is linear in a?, there is the possibility of
substantial gain for small mirror losses.

For other than cubic nonlinearities, very similar proper-
ties hold. For example, consider the saturable nonlinearity
NIy = — (14 2I)~". A good way to picture the situation
is as follows: First, sketch the curve (R + R ~! —a?/RI)/2
[see Fig. 5(a)]. Then on a cos I" curve find ¢ and ¢ — /,
(¢>1) [see Fig. 5(b)]. Finally, use the monotonic transfor-
mation (3.6a) I'(J) =¢ — [1/(1 + 2I)]! to stretch the
cos(*) curve over the entire I axis (¢ —I=I=0,
¢~I= + o) [see Fig. 5(c)]. From this construction one
sees that the qualitative features describe for the Kerr fixed
points persist for the saturable nonlinearity. In particular,
one again obtains a hysteresis curve like Fig. 4. To obtain
more quantitative information about the fixed points, the
transcendental equation (3.6b) must be solved numerically.
Next, we turn to a discussion of the stability of these fixed
points.

Consider the map 7°(-),

h=T(f,f*) =a+ Rexplil¢ + N(ff*)I/2)1f,
(3.8)

and linearize it about a fixed point g. That is, write f=g +f,
h = g + h, and retain only linear terms in f,A:

(7?*) =b.T (77 )

where D, T denotes the derivative of T"at (g.g*),

(3.9a)

FIG. 4. Hysteresis (bistable) re-
sponse curve for the case repre-
sented by three fixed points (see
Fig. 3).
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We recall that the Jacobian of 7(g,g*) =det D,T=R 2
also, note that if (u, v) denotes an eigenvalue, eigenvector
pair of D, T, then so does (u*,w = (v3,0})). The eigenvalues
(g 1147) of D, T satisfy

nt, =R2<1, (3.10a)
By +pp = [1+i(1/2)N"(gg*)gg* 1 Re™
+ [1—i(I/2)N'(gg*)gg*1Re~".  (3.10b)

The fixed point g is linearly stable to forward iterations
if and only if |u; | <1, forj = 1,2. Here two cases arise: (i) x4,
and y, both real, or (ii) u, = u¥. The second case of conju-
gate pairs is always stable, since uu, =pu¥=R?*<1.
Thus no “Hopf bifurcations” are allowed. In the first case of
real eigenvalues, either both satisfy |1;| < 1, or one satisfies it
and the other does not. As an eigenvalue u crosses + 1, the
instability which occurs is a “saddle-node” bifurcation. As
an eigenvalue y crosses — 1, a period-2 bifurcation occurs.
Typical trajectories of the y eigenvalués as the parameters
change are depicted in Fig. 6.

This linearized stability analysis can be applied to hys-
teresis loops such as Fig. 4. In many instances, for lower
values of the stress parameters a and /, one finds that the
upper and lower branches are stable, while the intermediate
branch is unstable. Thus we have the necessary ingredients

(@) |y (R +R")mmm e eomee -

I+ /

Cosig-1)

FIG. 5. Similar graphical fixed point determination to that shown in Fig. 3.
Here, however, the nonlinearity is saturable. (a) and (b) The right and left
sides of the equality (3.6b); (c) the superposition of both.
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_ [(1+i72)N"(gg*)gg*)Re™
A8 L—it/2)N ' (gg*)g*%e~ "R

. ' ir
i(1/2)N'(gg*)g%™ R ] (3.9b)

(1—i(1/2)N'(gg*)gg*)Re~ "1~

E‘or an on-off optical switch.? However, as the strengths of
the parameters are increased, branches can destabilize to pe-
riod doubling bifurcations although, in the case of the satu-
rable nonlinearity, the upper most branch appears to be al-
ways stable.

Rather than continue the detailed algebraic analysis of
(3.10) in order to study the linearized stability, we iterate T
numerically. These studies are summarized in Fig. 7, which
shows a bifurcation diagram as a function of the parameters /
and a’. This diagram shows stable fixed points going unsta-
ble to period-2 states, which in turn go unstable through a
period doubling route to chaos. It also shows that different
chaotic states (with different basins of attraction) can coex-
ist at the same parameter values.

Numerical experiments can be used to study these chao-
tic attractors. For example, a sequence of iterates can be
plotted on the complex phase plane, Fig. 8. This figure shows
the leafy-Cantor-like structure which is now familiar in
“strange attractors.”

Using global phase space methods,® considerably more
information can be obtained about the map 7. In particular,
it is important to understand the universal, self-similar prop-
erties of this two-dimensional, invertible map in a class of
maps which are the composites of a nonlinear rotation, a
contraction, and a shift. However, for our purposes the more
elementary analysis summarized here is sufficient.

We close this section on the plane wave map by return-
ing the reader’s attention to its hysteresis diagram, Fig. 4,
which will play an important role in the next section.

FIG. 6. A sketch of the behavior
of the plane wave map eigenvalue
pair (u,u,) near a (a) saddle

node and (b) period doubling bi-
furcation.
(b)
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FIG. 7. Numerically generated bifurcation diagram in coordinates (a%/)
for the plane wave map [Eq. (3.2)] (Ref. 8a). This diagram shows only a
part of the full picture discussed in Ref. 8b. Two distinct period doubling
routes to chaotic attractors are indicated by the unbarred and barred sym-
bols respectively. [S(S)--stable fixed point, D2(D2)-—period 2,
D4{D%)—period 4, C(C)—chaotic attractors ]. These attractors coexist in
wide regions of parameter space. The cross-hatched region contains a peri-
od-6 attractor that can coexist with attractors from either route (Ref. 8a),

IV.NUMERICAL DESCRIPTION OF FIXED POINTS WITH
TRANSVERSE STRUCTURES

We turn to the original problem (2.2), with one-dimen-
sional transverse effects included by considering an input
field a(x) which has a Gaussian-like transverse profile,

ZiEG +ié-2-G + N(G,G")G, =0, (4.1a)
az n f axz n n n n
G,(x,0) =a(x) + Re*G, _, (x,]). (4.1b)

.88

-1 .80

FIG. 8. Chaotic attractor numerically generated by iterating the plane wave
map many thousands of times for a fixed set of parameter values in region C
of Fig. 7.
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Clearly this infinite-dimensional map possesses a wide var-
iety of potential responses depending upon parameter val-
ues. We restrict these by focusing our attention (for the most
part) on large Fresnel numbers [F = (In 2/47)f = 1003 1]
and selecting the parameters ¢, /, and R in regions where the
plane wave map has a hysteresis diagram such as Fig. 4.

In Eq. (4.1a) the only coupling of a transverse segment
of the beam profile to its neighbors occurs through the La-
placian £ ' d,,. For large Fresnel numbers and moderate
transverse gradients in the input pulse, £~ d,.a(x) €a(x)
and this coupling can be initially neglected. Initially, then,
each transverse segment of the profile acts independently
from its neighbors and its dynamic are determined by a local
plane wave theory. Thus those points on the Gaussian profile
for which a(x) >a(x ) = I, (see Fig. 4) will switch up
to the upper branch while those parts for which
a(x)<a(x, )= VI, will go to the lower branch. The center
of the beam profile will switch up, while its wings will not.
For the saturable nonlinearity, with parameter values set at
[F=100,!=2,¢ = 0.4, |a(0)|*> = 0.0375], this situation is
shown in Fig. 9. The Fresnel number F is related to f by
F = [(In 2)/4w] f. In Fig. 9 we show that initial Gaussian
profile, and the output profile after 23 passes through the
nonlinear medium. Notice that the center of the profile has
switched to the upper branch while the wings have switched
to the lower branch according to the plane wave theory.

However, now the two outer edges of the profile possess
a steep gradient and, near x~x _ , the term f ' 3,, G, is no
longer negligible and the plane wave approximation is no
longer valid. Numerical experiments (which solve the full
partial differential equation) show what happen during this
stage of the evolution. At the edges x , narrow spatial rings
of width Ax = O(1/yf ) are generated (Fig. 10). These nar-
row rings eventually fill out the region between x_ and x .
Once these spatial rings form and fill up the transverse pro-
file, they persist and describe the large # asymptotic response
of the infinite-dimensional map. These rings can become the
steady state response of the system,; that is, they can be stable
fixed points of the infinite-dimensional map.

21

|Gn|

O i i i
-08*- 0
X

*+0.8

FIG. 9. Switched-on transverse beam profile G, (x,/) atiterate n = 20 of the
infinite-dimensional map [Eqgs. (4.1a) and (4.1b)]. The sharp gradients at
x, induce strong local transverse coupling and should be contrasted with
the smooth initial pump profile a(x) also shown in this figure. Parameters
used to generate this and Fig. 10: F = 100,/ = 2, ¢ = 0.4, |a(0)|> = 0.0375.
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FIG. 10. Transient switching of the transverse profile G, (x,/) from the ini-
tially broad and smooth pump profile a(x). (a) The development of the
sharp gradient at the edges (x, ) and saturation at beam center over the
first 20 iterates of Eqs. (4.1a) and (4.1b). The initiation of the transverse
spatial rings occurs at these sharp edges. These rings grow inwards towards
beam center. (b) Iterates n = 20-40.

For example, a fixed point does emerge from the tran-
sient pictured in Fig. 9. This fixed point, as shown in Fig. 11
at the 200th resonator pass, is a seven stationary ring pattern
whose rings sit on a broad background or shelf which can be
identified with the lower branch fixed point of the plane

wave case.
The number of rings can be controlled. For the saturable

nonlinearity, we have observed 1, 3, 5, 7 stationary rings.
The actual number of rings seems to be a function of the
transient shape realized after ~ 20 passes; it is determined
approximately by the number of rings of width 1/yf which
can fit in that portion of the beam which switches to the
upper branch, i.e., number of rings a\/f (x4, —x_).Ournu-
merical calculations show that the upper branch of the hys-
teresis curve can be segmented into small bands in |a(0)|?,

21r

o | |

064

O%HJuwv

FIG. 11. This figure shows the large n (n = 200) asymptotic state of the
map which follows the dynamic evolution of the preceding figure. This sev-
en-ring stationary pattern represents a fixed point of the infinite-dimension-
al map [Eqgs. (4.1a) and (4.1b)].
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FIG. 12. Hysteresis loop showing the relative disposition of stationary »n-
ring (n = 1,3,5,7) fixed points on the upper branch of the loop. In the gaps
between the marked-off regions, the transverse profile never settles down to
a stationary ring pattern but instead undergoes a complicated oscillatory
motion as discussed in the text.

where n spatial rings, with n an odd interger, are the stable
steady states of the system. For example, the experiment
with parameter values set at (F = 100,/ =2, ¢ = 0.4), the
segment 0.008 < |a(0)|* <0.018 has a fixed point which con-
sists of a single “ring,” whose spatial profile has an ampli-

tude which increases and a width (~ 1/ \/;" ) which decreases
as |a(0)|? increases from 0.008 to 0.018. Increasing |a(0)|?
further, for example, to |a(0)|*> = 0.025, so that it lies well
beyond the switch-up point (a in Fig. 4) produces a station-
ary three-ring structure. Between the n = 1 and n = 3 sta-
tionary ring regions there exists a finite range of |a(0)|?
where one observes a slow recurrent oscillation between one
and two or two and three ring patterns. Even numbers of
spatial rings can appear initially, but they continue to oscil-
late in a complicated manner on further circuits of the reso-
nator. Whether the rings become stationary or not seems to
depend on whether an odd integral number rings of width

~1/y/f can fit into the total area of the switched-on portion
of the beam (see Fig. 9). The relative disposition of the n-
ring stationary transverse spatial structures on the upper
branch of the hysteresis is summarized in Fig. 12.

We have carried out the following numerical experi-
ment to establish the role of the external pump and dissipa-
tion [Eq. (2.2b)] in stabilizing these transverse ring struc-
tures. The stationary rings that developed after 200
resonator passes were taken as initial values to the nonlinear
evolution equation (2.2a) and propagated down a long tube.
After a short distance, of the order of a few medium lengths
in the resonator, the rings were observed to oscillate up and
down in amplitude about their original stationary values.
This demonstrates immediately that the map (2.2a) and
(2.2b) acts to freeze out these rings structures. For three
rings at |a(0)|*> = 0.025 (F=100, =2, ¢ = 0.4) we ob-
served the following behavior. Initially the rings appear to
oscillate up and down but do not attain any noticeable veloc-
ities. They appear to be trapped by the broad shelf which
represents the plane wave lower branch fixed point. On
further propagation the shelf becomes modulated and low
amplitude rings develop. Once these are well formed the two
large amplitude outer rings in the triplet begin to slowly
propagate outwards, interacting nonlinearly with and pass-
ing through their low amplitude neighbors. This behavior is
reminiscent of soliton propagation. We tracked the evolu-
tion until both outer rings reached the “l/¢” value

Adachihara et al. 68



0 I
-

Y I

04l .

02

] J
0 0.1 0.2

FIG. 13. Plane wave hysteresis loops for a Kerr (dashed) and saturable
(solid line) nonlinearity. The parameters used to compute these curves are
1=2,4=06.

(x = 4 1) of the original input Gaussian beam. The center
ring just oscillates up and down. These experiments indicate
that the rings are independent structures entrained as a con-
sequence of the pump and dissipation terms in the map.

As mentioned earlier, the rings sit on a broad back-
ground which, since f is large, should have the height of the
plane wave lower branch fixed point. To verify this, we con-
sider the experiment with parameter values [F= 100,
|a(0)|* = 0.008,/ = 2, ¢ = 0.6]. For these values of / and ¢,
the plane wave hysteresis curves for both the saturable and
Kerr nonlinearities are shown in Fig. 13. Using these hyster-
esis curves, we compute how the wings of the transverse
profile should behave. The prediction is compared with the
actual transverse experiments for the saturable case in Fig.
14 and shows perfect agreement.

The switch-up mechanism is primarily controlled by the
sizes of the Fresnel number F. This is illustrated in Fig. 15 for
both the saturable and Kerr nonlinearities. For this figure,
the parameters [/ =2, ¢ = 0.6, and |a(0)|* = 0.01] were

0.5¢r
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FIG. 14. A plot of one-half of the spatial three-ring fixed point with the
predicted plane wave fixed point curve (dashed) superimposed on the wing.
The transverse wing and plane wave fixed point curve are indistinguishable.
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FIG. 15. Four cases showing detailed switch-on behavior of the beam
G, (x,]). Cases (a) and (b) correspond to Kerr and saturable nonlinearities
with F=1, while (c) and (d) represent the same nonlinearities with
F=100. Parameters used are given in the text.

chosen, and for each nonlinearity, two experiments—one at
F =1and asecond at F = 100—were conducted. Notice the
absence of a flattop in the beam profiles for F = 1. Although
the switch-up procedure is predominantly determined by the
size of F and is very similar for both nonlinearities, Fig. 15
does indicate that the beam grows in a somewhat more con-
trolled manner in the saturable case.

The Fresnel number F also plays a major role in deter-
mining the width of the upper branch rings. When Fis large,
these rings are skinny and tall. For example, with F = 100,
|a(0)|? = 0.008, I = 2, ¢ = 0.4, the situation is as shown in
Fig. 16.

We close this section by describing some of the differ-

o}
G
05—
o 1J L \I ;
X

FIG. 16. An example of a three-ring fixed point showing the narrow rings
sitting on a broad shelf corresponding to the lower branch plane wave fixed
points (see Fig. 14).
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FIG. 17. An example of a single-ring Kerr fixed point at parameter values
F=08,1=15, ¢ = 0.4, and a(0) = 0.003.

ences that we have observed when the saturable nonlinearity
is replaced by the Kerr nonlinearity. Generally, both the
evolution of the beam and the final asymptotic states are
much more sensitive to the pumping amplitude in the Kerr
case. First, it is difficult to achieve a single-ring asymptotic
state in the Kerr case. The only region on the upper branch
where a single-ring shape appears to arise is at the extreme
left near the switch down point. In Fig. 17 we show one such
single-ring profile for [F=0.8, /=135 ¢=04,
|a(0)|* = 0.003]. Second, fixed points are more difficult to
achieve. As |a(0)|? is increased, extra rings do appear, but
the beam approaches an oscillatory state rather than a fixed
point. This state resembles an exact multisoliton solution of
the integrable (Kerr) nonlinear Schrédinger equation. It
should be contrasted to the multiring fixed points which
arise in the saturable case and which appear to be phase-
locked individual entities. To emphasize the distinctions we
propagated both asymptotic states down an extended tube.
In the Kerr case, the asymptotic state of the resonator per-
sisted as a coherent transverse structure which did resemble
{in one case at least) an analytically generated two-soliton
waveform. On the other hand, in the saturable case, the indi-
vidual rings did not remain locked together as they propa-
gated down the long tube; instead, they drifted apart at dif-
ferent velocities.

We can conclude from these numerical studies that the
asymptotic dynamical states for the field on the upper hys-
teresis branch differ significantly for saturable and Kerr
nonlinearities. In the Kerr case, fixed points are rare; the
asymptotic states then to be oscillatory. They also depend
rather sensitively on the pumping amplitude. The saturable
case has more controlled, more stable asymptotic responses.

V. SOLITARY WAVE REDUCTION OF THE MAP
A. Solitary waves

Krnown theory for the nonlinear wave equation (4.1a)
indicates that the transverse rings should be solitary waves
provided the nonlinear medium is sufficiently long. (Soli-
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tary waves are the asymptotic states of the propagation equa-
tion.') A particular solitary wave is a solution of (4.1a) in

the form (y = Jf x)

G, (y,zA) = S(ApA)el A’ — b#2] (5.1)
where S(8;4) is a real, even solution of
Sep — S+ (1/A*)[1 + N(S*H]S=0, (5.2)

which vanishes as 8 — oo . The general solitary wave is a four-
parameter family of solutions of (4.1a),

G, (yz A, 7.a0)
=S[A(y —a—uvz) A ] A -1-N247 (53

which can be obtained form the particular solution (5.1) by
using the symmetries of phase, translation, and Galilean in-
variance. In this work it will be sufficient to consider the
two-parameter family

G, (y.z:Ay) = S(AyA)e! A - DE» 41, (54)

because the transverse profiles are symmetric about the
beam axis. (We prove a posteriori that this symmetry re-
mains unbroken when the stresses are applied to this cavity. )
The parameter 4 determines the amplitude and width of the
solitary wave, while y determines its phase.

Inthecaseofthe Kerrnonlinearity [1 + N(S?) = 252],
the solitary wave takes the explicit form

S(61) =Asech 8, 6=Ay. (5.5)
Here A certainly determines the amplitude and width of the
solitary wave. For more general nonlinearities, one must
study the differential equation (5.2). We illustrate for the
saturable case where

1+ N(@S?) =1—1/(1+285%) =25%/(1+25?).

(5.6a)

Introducing a potential ¥'(S), which for this saturable case
takes the form

V(S) = (—1- _ 1) 5 L 14257,  (5.6b)
A2 2 442
the differential equation (5.2) may be rewritten as
M a
S§” = 5 V(s). (5.6c)
This equation has the immediate “energy integral”
IS?=E—V(S). (5.6d)

The potential V'(S) is sketched in Fig. 18. From this sketch
of ¥, we see that E must be chosen as zero if we are to satisfy

]
VI
S) Qxlz-l)%z
\ Se /
Sm S
Sc=/»%/2(1-32)

FIG. 18. Sketch of the potential ¥(s) for the saturable nonlinearity.
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FIG. 19. Sketch of the solitary wave shape derived from the potential in Fig.
18.

the boundary condition at 8 = o, and that the parameter A
may take any value in the range 0 <4 < 1. (No solitary wave
exists for A > 1.) With these considerations the qualitative
shape of the solitary wave S(8;1) is sketched in Fig. 19. The
amplitude S,, =5, (1) is determined from

(1-1%82 =14In(1+2S,,), (5.6e)

and is a monotone increasing function of A as A runs from 0
to 1.

B. Numerical comparison of transverse profile with
solitary waves

In this section we fit solitary waves to the transverse
profiles which are fixed points of the infinite-dimensional
map. These fixed point profiles are generated by solving

(a)
=
|G|2 —
LQ
-0.10 -0.05 0 005 0.0
1.0 X
(b)
Il os-
| | | i J
% -2 0 2 4

X

FIG. 20. Comparison of numerically generated single-ring fixed point
shapes (solid curves) with solitary waves shapes (dashed curve), of the
same amplitude. (a) Saturable nonlinearity [F=100, /=2, ¢ =04,
|a(-)|*=0.008]. (b) Kerr nonlinearity [F=0.8, /=15 ¢=04,
la(+)|* =0.003].
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(4.1a) and (4.1b) numerically. First, we describe the satura-
ble case. Typical results are depicted in Fig, 20(a). There we
show a transverse intensity profile generated by solving
(4.1a) and (4.1b) with parameters set at F =100, / =2,
¢ =0.4, |a(-)]>*=0.008 (for single soliton). The profile
shown is that of the 200th pass, by which time all transients
have died out and the profile is certainly a fixed point. In this
case, the profile consists of a single pulse on top of an almost
flat background. The pulse is accurately represented by a
solitary wave as the figure shows. To obtain that fit, we select
the amplitude parameter A to agree with the numerical peak
and solve Eq. (5.2) with appropriate boundary conditions.
The wings of the actual profile do not approach zero as does
the solitary wave; rather, as established in Sec. IV, they ap-
proach the lower branch height of the local plane wave hys-
teresis curve.

Turning to the case of Kerr nonlinearity, it is more diffi-
cult to find parameter values for which the map has fixed
points. One such fixed point is shown in Fig. 20(b) where we
choose F=0.8, |a(0)|>?=0.003, /=1.5, ¢ =04. The
dashed curve is the exact soliton solution which has the same
amplitude as the observed fixed point. The two curves agree
very well except at the wings. As mentioned above, if the
input intensity is raised, the wings begin to grow and interact
with the central peak. Then the whole profile starts to oscil-
late. With these parameter values we have not observed mul-
tiring fixed points like those obtained in the saturable case;
rather, the oscillations seem to persist indefinitely.

The numerical experiments just described show that the
central part of the transverse fixed points are well approxi-
mated by solitary waves. However, the correct amplitude
parameter has been chosen by a numerical fitting procedure.
Next, in Secs. V D and VI, we determine the correct ampli-
tude parameter analytically.

C. Solitary wave projection formalism

We will use solitary wave perturbation theory to reduce
the infinite-dimensional map (4.1a) and (4.1b) to a two-
dimensional map. First, some background material. We con-
sider the nonlinear wave equation

d

2i5-G+ny+N(GG*)G=0, (5.7a)
z
a solitary wave solution

G, = S(AyA)el*’ — D2, (5.7b)

and the linearization of the nonlinear wave equation about
the solitary wave (G=G, + G, |G|<1),

225+ G,y + [N(S™) + N'(S)S™G
iz

+ [N'(5)G2)G*=0. (5.7¢)
Symmetries of the nonlinear equation (5.7a) generates solu-
tions of the linear equation (5.7¢). In particular, the general

solitary wave (5.3) yields four solutions of (5.7¢):

a(l)z_a_G ,
da 3 a=0 »=0, y=0
go=9 ¢ ,
37’ g a=0, v=0 y=0
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5"3)=°—Gs , (5.8)
3v a=0, v=0, y=0

6(4)=—3-Gs .
all a=0, v=0, y=0

A basis of generalized solutions of the linear equation
(5.7¢) exists in which the four solutions (5.8) span a distin-
guished four-dimensional subspace. In a sense this four-di-
mensional subspace forms the “soliton component” of the
phase space. The details of this decomposition may be found
in Appendix B.

D. Solitary wave reduction of the map

Armed with the spectral machinery as described in Ap-
pendix B, we return to the infinite-dimensional map (4.1)
and consider the possibility of a solitary wave reduction.
Given the laser field at the entry point z = O to the nonlinear
medium, we would like to predict which solitary wave
emerges at the exit point z = /. For this problem to have an
answer, the medium must be long enough (/ sufficiently
large) that the nonlinearity has time to filter the laser field
into its asymptotic solitary wave profiles. We restrict our
attention to such sufficiently long cavities. Under this re-
striction a global answer to our problem is known for the
Kerr nonlinearity. That is, given any initial data, one can
predict, using the inverse scattering transform, exactly
which solitons emerge at the end of a Kerr medium. Unfor-
tunately, this mathematical transform method does not ap-
ply to more realistic saturable media, and we must content
ourselves with a more local problem: For initial data close to
a given solitary wave, can we predict which modified solitary
wave emerges? This problem takes the mathematical form
(for small €)

2iG, + G,, + N(|G|)G =0,

Gz =0) = G,(»0A,7,a0) + €6, ().
Which solitary wave emerges? That is, what are the values of
its parameters?

In general, these output parameters are not equal to
their input values because some of the solitary wave which
emerges is hidden in the perturbation €G,, of the initial data.
To see this, assume for the moment that the solitary wave

which emerges is equal to the input solitary wave and seek a
solution of the form

G(y2) = G, (yzA.1,ap) + €G(y,2), (5.10)

where to first order in ¢, G satisfies the linear equation
(4.7¢). One solution of this equation is

(5.9)

a% G, 24, 1,0,0);

thus the G(p,z) can be written as

G.zA) = G, (r.2d) +ce-b‘976s<y,z;z> + €6,

for some constant ¢ which must be determined by the initial
data G, . But this equation can be rewritten as

G(zA) = G,(y,zA° =4 + €c) + €G, (5.11)

by a Taylor series expansion of G, (*,;4 “=A + ec). The
solitary wave that emerges has a new parameter A ¢
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=4 + éc, and we must compute its correction ¢ in terms of
the initial data G;,.

This calculation proceeds as follows: Motivated by
(5.11), we replace (5.10) by an ansatz of the form

G(2) = G, (n.z:A S50 %) + G (3,2). (5.12)

This amounts to linearizing about the solitary wave which
eventually emerges. At this stage in the calculation we do not
know the values of the parameters 4 ©,y,a%,v". These must be
computed. Now G satisfies the linear problem (5.7¢) with
initial data
G(yz=0) =G, () + (1/€) [ G, WA, 1,a,0)
- Gs (}’fv E,Y‘,ae,v‘) ]

=G& (). (5.13)
We choose the parameters 4 <,*,a%,v° by demanding that, to
first order in ¢, the G(»,0) contain no solitary wave. This is
accomplished by demanding the G(,0) be orthogonal in an

appropriate sense (see Appendix B) to the four solutions
(5.8). Explicitly, we write

G(.2) =g(pa)ele+ 16 1 =Pk,

U

g=U+1iV, g=(V),
and demand
(S5U-,0)) = (S5 Reg(-,z=0))=0,
WS U(,0)) = (»SReg(-,z=0)) =0,
(S5,7(,0)=(5;,Img(-z=0))=0,
S5 +A85,V(,0))

=S5 +4°85,Img(+,z2=0))=0,
where 5

g2(y,0) = e_i[”’+7]an o).

We now apply criteria (5.14) to the map for the optical
bistability problem:
)

2i£Gn+l +Gn+l,yy +N(|G,,+1|2)G,,+1 =0,

(5.14)

(5.15)
G (10) =a(y) + Ree'l L= D2V *nlgz 45y

In writing (5.15), we have assumed that the output of the
nth pass down the nonlinear medium is a pure solitary wave.
All other modes, such as radiation, have been neglected. In
addition, we have elected to examine an output which is
symmetric about the y = 0 axis. Thus the parameters g and v
may be ignored by symmetry considerations. Since R~1
and a €1, initial data (5.15b) may be treated as a small per-
turbation of a solitary wave. (Here the phase factor
[¢ + (A2 — 1)1/2 + y, ]| merely changes the phase in the
solitary wave.) We use (5.14) to predict values for the pa-
rameters of the solitary wave that emerges after the next
pass:

(S,,+1,S,,+,) = (A,,+1,S,,+1)COS}’,,+1
+RCOS I‘n,n+l('s'n+l

n,n+l)’
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0= — (A, 1 Pny1)8INY,

+Rsinl,, 1 (Pns15Suns1)s (5.16)
where
A, =a8/2,,.,),
Suy1=8(64,,1),
Coni1 =8+ u—Var) +U/2YAL 1),
Sunar =SU,0/2, 1340,
Pn 1 =/1"1+1 08,(0A, 1) +';387S(6/1) o
(5.17)

Equation (5.16) defines a two-dimensional real map on
the solitary waves parameters (4,y):

(/{n,yn)_’(/in+1,7’n+1)' (518)

We have used solitary wave perturbation theory to reduce
the infinite-dimensional map (3.1) to a two-dimensional one
(5.17).

The equation for the fixed points (4,y) is much simpler
than the map itself,

(S,S) = (4,5)cos ¥ + R cos I'(S,S),

. . (5.19)
0= — (4,0)siny + R sin I'(p,S),
where
S=8(64), A=a(8/4),

T=¢+U/DA=1), p=,1i050 +ai,1sw'““'

VI. REDUCED MAP ON THE PARAMETERS OF THE
SOLITARY WAVE

The main result of Sec. V is the map

(lniyn)"'(/in+l97’n+l) (6.1)
on the amplitude and phase parameters, which is given expli-
citly by (5.16). The fixed points of this map satisfy (5.19);
thus (5.19) predicts the parameter values for the solitary
wave that finally emerges after many passes through the
nonlinear medium.

A. Reduced map—saturable case

In general Eq. (5.19) for the fixed points is quite implic-
it. First, we solve it numerically for the saturable case. Typi-
cal results are shown in Fig. 21. We emphasize that there are
no free parameters in this theory. The theory rigidly predicts
the amplitude of the solitary wave that emerges. The results
(Fig. 21) are very accurate.

B. Reduced map—Kerr case

In the Kerr case, much more can be done analytically,
primarily because of the explicit formula for the solitary
wave,

S(G:A) =Asech 6. (6.2)

Using this formula we place the reduced map (5.16) in the
form

A'n+l =As(ln+l)cosyn+l
+RBS (ﬂ'n//ln+ 1 )cos(rn,n+ 1 )ﬂ‘n’
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2.1r

6 |

FIG. 21. Comparison of solitary wave fixed points (dashed curves) of the
reduced map [Eq. (5.19)] with the numerically generated shapes for a
saturable nonlinearity. (a) Comparison with the single-ring shape (solid
curve) [F=200, /=2, ¢ =04, a(0) =0.1]. (b) Comparison with the
central ring of the seven-ring fixed points [F=200, /=2, ¢ =04,
a(-) =0.19] (see Ref. 3).

0= _Ap('{n+l)Sin‘yn+l (63)
+RB,(A,/A,,)sin(T,,,)A,,

where

1 7]
A, A, ) =7fsech0a (1n+1)d0’

A,,(A,,):f(aseche),,a( 4 )do,

n+1

A
B,( An ) =1 fsech 2] sech( i )dﬁ,
A‘n-{—l 2 /1"_'_1

A A,0
B,,( " )= f (0sech0)esech( " )do,
ln+l ﬁ'n+l

Fn,n+l =¢+(7/n _7n+l)+ (1/2)(1’: _l)

Map (6.3) should be compared with the plane wave map for
the Kerr nonlinearity:

i[¢+ (1/2)(2]g,I* - l)lg", (6.4)

gn +1 = a + Re
which may be rewritten in the form (g = A¢”)

Apey =@COS¥y,y +Rcos(Tpnyi)hy (6.4')

0= —asiny,,, +Rsin(l',,,,)4,.
In this Kerr case, the map on solitary wave parameters,
Ani1 =A; (A, 1)c087, 44
+RB, (A, /A, 1)cos(T, .. )A,,
0= —4,(4,,,)siny,
+RB,(A,/4,  )sin(T, , .1 )A,,

and the plane wave are very similar. The main difference is
that constants in the plane wave case are replaced by projec-
tions over solitary wave profiles. These projections make the
map (6.3) slightly more implicit than its plane wave coun-
terpart because of the dependence on A, ., on the right-
hand side. More importantly, a symmetry in the plane wave
map [acosy,,;, —asiny, ] is drastically broken by
these projections. To see this, realize that the solitary waves
which evolve are typically narrow when compared to the
input Gaussian. In this case, the projections of the Gaussian
a(y) can be estimated:

6.3)
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FIG. 22. Fixed points of the reduced map for the “constant Kerr” case [ Eq.
(6.6)].

1 6 ) T
A =— h 6 af — JdG~— a(0),
A, (A) = (0 sech 8)4a(8 /A)d6=0.
We use this calculation to introduce a third map, which we
call the “contant-Kerr” case [a = a(0)]:

(6.5)

An-&—l = (”/Z)GCOS’/n-kl
+ RB (A, /Ay 1 )c0s(D,, 1 )A,,
0= +RB,(A,/A,, )sin(T,, )4,

This last map is rather easy to analyze. Its fixed points
(A,y) satisfy

A = (7/2)a cos ¥y + R(cos ')A,

(6.6a)

-
-
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FIG. 23. Fixed points of the reduced Kerr map {Eq. (6.3)] showing the
breaking of degeneracy by the transverse spatial dependence of a(-). (a)
F=5¢=04,1=20,R=09.(b)F=1,6=04,/=2,R=009.

cutoffs are the maximum-minimum responses of the plane
wave map, Eq. (3.7). Notice also that each curve, except
A = 0, stands for two fixed points (4;, 1 ¥;). As approxima-

(6.6b) tion (6.5) is removed, this degeneracy is broken and the
O0=(sin)A, T=¢+ (I/2)(A2-1), curves develop a dependence on the amplitude a*. These are
which can be solved explicitly to yield pictured in Fig. 23. Next, we linearize this map about a fixed
point (4,7, ):
A=0, T=jr=d,=y1+20jm—$)/I, 660 2’ ’ .
, .6¢ . n
cos y; = (2/ma)[1 — ( — 1¥R ]A;. (- N }) = T(/i,y)(- ), (6.6d)
These are sketched in Fig. 22. Notice that the only a* depen- Vue ¥
dence is a lower cutoff which guarantees |cos ;| < 1. These ~ where
J
A=4#0, y=v;,
—ma/2)Asiny + (—1YR /2 — (ma/2)siny
Ty = (1+(—1Y*'R/2) 1+ (—=1Y*'R/2)| (6.6e)
A 1
I
Now the Jacobian at this fixed point is given by they satisfy 14, == R /(2 — R). They both can be less than 1
det T(A,y) = (— 1YR/2/[1 — (—1YR /2] . (6.6f)  or one can pass through either + 1 or — 1. The latter case

This is approximately equal to R ? if jis even and far from R ?
if j is odd. For this reason, we restrict our attention to the
even values of j. For even j, the eigenvalues of T satisfy

21— (lma/2)Asiny R/2

1—rzz “YT_rp =% (66

As in the case of the plane wave map, these eigenvalues are
either both real or are conjugates of each other. In the latter
case, they always satisfy |;2| < 1, and hence the correspond-
ing fixed points are stable. When the eigenvalues are real,

u
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indicates a period doubling instability of the fixed point.

Consider a fixed point (4,,7;) and its sister (4, — 7;).
We call (4,,7, >0) the “lower jth branch” and (4;, —7;)
the “upper jth branch” because of their locations once the
degeneracy is split by removing (6.5). One can show that the
lower branch is always unstable. The upper branch has the
stability depicted in Fig. 24. A curve can be drawn, to the
immediate right of which a period-2 bifurcation occurs (Fig.
24). Some parameter values at which the period-2 bifurca-
tion occurs are listed in Table 1.
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FIG. 24. Stability of the upper branch of the eigenvalue pair as a function of
increasing pump intensity a( - )* for the “constant’” Kerr map. The eigenval-
ue pair is denoted by & along the horizontal line. The period doubling bifur-
cation occurs at >, (u; = — 1).
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When a is nonconstant, the approximation (6.5) applies
no more and the fixed point of the map (6.3) has to be evalu-
ated numerically. To be consistent with (2.2a) and (2.2b),
we choose a(y) = a(0)exp[ — [In 2/47Fl]y*]. A result of
such computation is shown in Fig. 25 where the solitary
wave fixed point is plotted as a dashed line and, for compari-
son, the plane wave fixed point is also plotted in a solid line.
The parameter values are F= 0.8, /= 1.5, ¢ = 0.4.

Keeping the same parameter values, we solved the equa-
tion numerically and compared resulting fixed points with
analytical ones. Two such attempts are shown in Figs. 26 and
27, where dashed curves represent predicted solitary wave
fixed points. In the first case, the relative error in amplitude
is about 2.9%:; in the second case, it is about 6.7%.

The discrepancies come from two sources. One is that
the observed fixed points are not pure solitons but rather a
combination of a single soliton and a lower branch fixed
point in the wings, where the latter presumably “pushes up”
the former resulting in a larger amplitude than the predic-
tion. The other is more subtle. In deriving the map we as-
sumed the form (5.10), where at each pass the boundary
condition is updated by a soliton plus a small perturbation.
Since the explicit expression of this perturbation term is
known in our formalism, we can compute its size relative to
the soliton. The computation shows that for certain param-
eter values its size becomes large. The region where the per-
turbation stays small turns out to be confined to the leftmost
part of the hystersis curves, which is shown shaded in Fig.
28. The crosses in the same figure represent the observed
fixed points. At the “tip” of the curve the relative size of the
perturbation becomes minimum, where we expect the best
fit.

TABLE 1. Parameter values for period-2 bifurcations.

$==04, I=2mr, R=09
j=0 @, =0.0506
j=2 a* , =0.0260
j=4 &, =0.0282
j=6 &, =0.0338
j=8 @ =0.0406
$=04, [=2 R=09
j=0 g, =0677
=2 @’ | =0.0867
j=4 a* , =0.0841
j=6 &, =0.0994
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FIG. 25. Comparison of the numerically generated fixed point curve of the
reduced Kerr map (dashed) with the corresponding fixed point curve of
plane wave map (solid). Parameters: F = 0.8 (dashed curve), /=15,
¢=04,and R =0.9.

Numerical experiments such as these establish that,
when solitary wave fixed points occur, their amplitudes (and
widths) are accurately predicted by the reduced maps,
(5.19) in the saturable case and (6.3) in the Kerr case. How-
ever, the experiments also show that the stability of these
fixed points is not accurately captured by these reduced
maps. Accurate stability calculations require the inclusion
of more degrees of freedom than just the (two-parameter)
solitary wave ansatz. Stability calculations are discussed in
Ref. 4.

Vi, ANALYTICAL FORMULA FOR SOLITON PLUS FLAT
BACKGROUND

In this section we derive an analytical solution of the
nonlinear Schrodinger equation with Kerr nonlinearity
which consists of a soliton plus a flat background. This solu-
tion has enough freedom to fit both a central peak and wings
of the fixed point profile. For simplicity, consider

i, + g +2|qI’g =0, (7.1)
which can be easily transformed into (2.2a). We apply a

10¢~

16|03}

0 1 i 1 |
-4 -2 0 2 4

FIG. 26. Comparison of numerically generated fixed points of the infinite-
dimensional map (solid curve) with the corresponding fixed point of the
reduced Kerr map (dashed curve). Same parameters are used as in Fig. 25
with a()? = 0.003.
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FIG. 27. Similar fixed point comparison as in Fig. 26 except that
a(-)? = 0.004. The increased discrepancy between fixed points is evident
with increasing a( )2

Bicklund transformation from the flat background solution
go = Ke?X " of (7.1) to create the desired formula."!

The Lax equations in this case reduce to the following
pair of Riccati equations:

. =gta? — 2ifa + qq, (7.2a)
a,= — Ca’ +24a + B, (7.2b)
where
A= —25*+iqqs, B=29¢f + idox
= — 248 +igh., E=E+in. (1.3)
Then the new solution ¢ of (7.1) becomes
g=go+4na/(1 + |a|®). (7.42)
Solving (7.2a) and (7.2b), we get
a(f+B|f1®) uxp
RS i Ey T 7
where

f= K*/2iw + e2iw(x+§t) +ﬂ’
B=i({—w)/K*,

w= (§2+ |K|2)1/2,

) = const.

We can show (1) as K—0, g reduces to a single soliton for-
mula; (2) for the special case where £ = i and 7°> |K |2,
lim,_ , . |lg| = |K|. Also, we have checked, by direct sub-
stitution, that is indeed a solution. The periodic behavior of
this solution is shown below.

The characteristic oscillation of the center and wings
seen in Fig. 29 has been observed in actual fixed points as
they propagate through an extended medium. Numerical
fits have been difficult and we are unable to present them
here. Nevertheless, formula (7.4) provides us with an analy-
tical solution which has enough freedom to describe the
complete profile of the single solitary wave fixed point, in-
cluding both its central peak and its wings.

VII. CONCLUSION

In this first of a series of papers, we have studied the
dynamics of an electromagnetic field in an optical ring cav-
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FIG. 28. Upper branch soliton fixed point curve of the reduced Kerr map.
The dot—dashed part denotes the region over which the perturbation is
small (see text). The two crosses denote the numerically generated peak

intensities. (42 = G?) from the infinite-dimensional Kerr map.
af

ity. In the present article our studies have been restricted to
one transverse spatial dimension. Specifically, we have iden-
tified numerically generated fixed points of an infinite-di-
mensional map (which models the physical problem) with
fixed points of reduced maps in the solitary wave (soliton)
parameters, for saturable (Kerr) nonlinearities. A math-

FIG. 29. Time evolution of the analytic solution to a soliton plus flat back-
ground (dashed curves) over a single period T of oscillation. The solid
curves represent the superposition of both pieces.
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ematical projection formalism has been developed to derive
the reduced maps, the fixed points of which accurately pre-
dict the output field shapes for the saturable case and give
good agreement over a more restrictive parameter range in
the Kerr case. In the saturable case there is little freedom in
the natural state of propagation which seems to produce, in
the full map, spatially isolated entities which phase lock. In
the Kerr case there are many independent N-soliton states of
propagation which complicate the response in the full map.
This rich variety of states makes the projection onto a single
solitary wave much less robust in this latter case.

Stability of these fixed points will be addressed in a fu-
ture publication. As a fixed point loses stability because of an
increased stress, the output experiences a fascinating transi-
tion into a modulational chaos. Correlation of this temporal
chaos with additional transverse spatial structure is current-
ly under investigation. Preliminary results may be found in
Ref. 2.

The situation in two (2) transverse dimensions is even
more interesting. Coherent spatial structures again play a
central role, but the chaotic state is much more severe. Pre-
liminary results are summarized in Ref. 2.

APPENDIX A: PHYSICAL AND MATHEMATICAL
DESCRIPTION OF THE DYNAMICS OF RING CAVITIES

In this appendix, we provide, for the readers’ conven-
ience a derivation from the first principles of the model equa-
tion. Much of this material can be found in texts on quantum
optics, each with their own notation.

The geometry of the problem is a ring cavity in which
the signal always propagates in one direction only. The dy-
namics of the electromagnetic field and the nonlinear medi-
um are described by the Maxwell-Bloch equations.

If the displacement field D is written as E -+ 47P
(Gaussian units are used throughout), where E is the elec-
tric field vector and P the polarization induced by E, then E
satisfies

2 2
1 I’E _4r P — 47V (V-P).

vg_LI9E
¢ at? 2 o’

(AD)

The polarization P induced by the electric field is caused by
the excitation of the atoms in the medium into a higher ener-
gy state. We assume a two-level medium in which the elec-
tron can occupy one of two states, a or b. (Spontaneous
emission from the higher energy state is important and ac-
count will be taken of this type of loss). The electron wave
function is written

¥(r,R,2) = a(r,)y,(R) + b(r,))¢, (R),
where the eigenstates ¥,,1, are normalized such that

fﬂ/r:'z//,, dR=6,,, efm/fm dR =efR¢,,¢,, dR=p.
(A3a)

(A2)

Symmetry of the states ¥,,, implies

fmpa.p: dR =fR¢,,¢,,* dR=0.

The positive vectors r and R refer to the center of the atom

(A3b)
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FIG. 30. An atom in the laboratory
] frame of reference: nucleus at r and
electronatr + R.

and the relative position of the electron, respectively (see
Fig. 30). The polarization per atom is

efR‘l"l’* dR =p(ab* 4 a*bh). (A4)

The wave function W satisfies the Heisenberg equation

av

h— = (H,+ U)V, A5
L/ £y (Hy+ U) (AS5)

where the Hamiltonian H = H,, + U consists of an unper-
turbed component Hj,

Hy, = ho, ¥, Ho, = ho, ¢, (A6)
and a potential U induced by the field E(r,?),
U= —eE-R. (A7)

From (AS) and (A2), the probability amplitudes satisfy the
equations

a,= —iw,a+ [(/Ep)/h ]b, (A8a)
b, = —iw, b+ [({Ep)/h]a. (A8b)

We will delay the introduction of the losses due to spontane-
ous emission until the subsection entitled homogeneous
broadening, but we stress that the situation studied in this
paper is dominated by their relaxation effects.

Our first goal is to develop equations for the quadratic
quantities

Q, =ab* +a*b, Q, =i(ab* — a*bh),
7 =aa* —bb*, (A9)
which measure polarization, its conjugate, and the popula-
tion inversion of the system. If there is no net loss from the a,
b states, then the probability of finding the atom in one of the
two states is unity,

aa* + bb* = 1. (A10)
A valueof 7 = — 1 means that all the atoms are in the lower
state b.

In order to write equations for Q,, Q,, and 7 it is conven-
ient to remove the ultrafast time scale ((@, + w,)/2) "
from the dynamics of the probability amplitudes 4 and b by
setting

(:) — e—i[(w,,+m,)/2]tu, (Al1)
whereupon # = (u,,u,)” satisfies
— iw,,/2 i(E-p)/h)
“= ( —i(Ep)/h w2 )t (Al2)

where 0, =®, — @, is of the same order of magnitude
(~10" sec™!, corresponding to a wavelength of 6000 A,
close to the D,, D, lines of sodium) as @ is the carrier fre-
quency of the electric field E(r,?). For situations discussed in
the paper, the electric field magnitude is such that the Rabi

Adachihara ot a/. 77



frequency (2p/h)E is approximately the same order of mag-
nitude as the detuning (@,, — ©) ~10%-10"! sec™' of the
system. Therefore the ratio p = 2pE /hw,, of the off-diag-
onal to diagonal terms in (A12) is ~10~7— 10~ * and small.
Consequently it is natural to solve (A12) iteratively by set-
ting

u= u(o) +pu(l) +p2u(2) + e (A13)
with
— it /2 0
u® = (e o e,-m/z) U, (Al4)
where
E(r,t) = F(r,t)e ' 4 F*(r,t)e”* (A15)

and U, F, and its complex conjugate F* vary slowly over
times of order 10~ sec. It is not hard to see that the slow
dependence of U on ¢ must be chosen to be

(-t (tF'P)/h) o
U‘_—((l'F*-p)/h g JU K= 0w e
(A16)

in order that »'¥ contains no secular terms proportional to .
This is called the “rotating wave” approximation in the
physics literature. The reason for the potential appearance of
secular terms is the near resonance between the frequency @
of the applied field and the two-level frequency @,,, a reso-
nance which would cause the asymptotic expansion (A13)
to cease to be valid after times ¢ ~ (w,, — @) ~'. The second
harmonic terms e * 2** do not cause any such problems and

can be included in &
From (A9), (Al1), (Al4), and (A16) we note that

Q, =UU¥e “ 4 UtU,e”, (Al7a)

Q, = iU, Ute — iUtU,e™", (A17b)

n=UU} - UU?, (A17¢)
and

T=aa* + bb* = U,U? + U,U*. (A17d)

The neglected terms in (A17) are of the order
(@, — w)/@,. It is convenient to write equations for the
complex polarization

A=2U0,U2% (A18)
rather than for Q,, Q; separately. We find

A, = — 26N = 2i[(Fp)/h 1y, (A19)

1, = (ip/h) (FA* — F*A), (A20)

T,=0. (A21)

Equations (A19)-(A21) are called the Bloch equations.
They allow us to compute the induced polarization per indi-
vidual atom

P, =1lp(Ae™ "™ 4 A*e* ™) (A22)
as a functional of the applied electric field E,
E = Fe ' 4 F*e™, (A23)

The evolution of the electric field is given by (Al). The po-
larization P in (A1) is the sum over the polarizations of all
the individual atoms and we will write this as
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P=(P,). (A24)

Before explaining how the sum { ) is taken, let us make two
straightforward observations. The first is that the induced
polarization P is parallel to the applied field and therefore we
can write E as E¢, p as pé, where & is a unit vector perpendicu-
lar to the direction of propagation, and (A1) becomes a sca-
lar equation. Since P, has the form (A22) and A varies on
the time scale (w,, — @) ' we can replace P, in (Al) by
— @P. Also since the variation of both E and P (which are
perpendicular to the direction of propagation) in the direc-
tion of propagation is small, we can neglect the divergence
term on the right-hand side of Eq. (A1) which now becomes

2 1 3E _ 4r
Equations (A19)-(A21), (A22), (A24),and (A25) forma
closed set of equations for the electric field, induced polar-

ization, and population inversion of the system.

(A25)

1. The phenomenon of inhomogeneous broadening

We now discuss how to compute the collective polariza-
tion P. If every atom behaved in exactly the same way, Eq.
(A24) would simply read

P=nP,, (A26)

where n is the density (number per cm?) of atoms. However,
because of the random motion of the atoms, each sees the
frequency of the applied field Doppler shifted by an amount
kev, (where k =27/A is the wave number of the carrier
wave and v, is the velocity of atom 4). Equivalently this
means that the effective two-level frequency is distributed
over a set of frequencies @)’ + k-u, where Aw'Y is the differ-
ence in energy levels @ and b for an atom at rest. Therefore
the frequency difference parameter

=0, —o
is distributed over a range of frequencies, characterized by a
probability distribution g(2¢£) reflecting the distribution of
velocities of the atoms. Given g(2£)d(2£) = 1, wenow cal-
culate (A24) as

P(r,p) =n f gQ200P, (Er,nd(2L). (A27)

Frequently the distribution g(24) is approximated by the
Lorentzian

g(28) = (T/m{1/[T? + 4(£ — £0)213, (A28)

where I is the line width and 2£, measures the distance of
the center of the distribution from the frequency of exact
resonance. We call the situation in which the Lorentzian
linewidth I" approaches zero the sharp line limit and in this
case the distribution function g(2£) becomes the Dirac delta
function 6(2(£ — &)

2. The sharp line, on resonance limit

We now calculate what happens in this limit (I'-0)
when the distribution is centered about the exact resonance
frequency, namely where £, = 0. In this case

A, = — 2i(Fp/h)y, (A29)
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1, = (ip/h) (FA* — F*A), (A30)
and
V2E — (1/c*)E,

= — (2mw?/c*)np(Ae =" 4+ A*et ™), (A31)
Let us now write

E(r,t) = e(r,t)sin(wt — kz), (A32)

where €(r,t), the electric field envelope, varies slowly with
respect to the carrier wave in the propagation direction z and
in time ¢, and not at all in the transverse directions x and y;
ie.,

Je de

— , —<&Kke.
o <ve 3¢

We obtain, on comparing the coefficients of cos(w? — kz),
€, + (1/¢)e, = 2monp/c)A”, (A33)

where A = AVe’™*, Noting that F = ie/2¢™, the Bloch equa-
tions now are

A = (pe/h)n, (A34)
7, = (pe/h)A™. (A35)

We can eliminate the Bloch equations by the choice of an
auxiliary variable u(z,t):

—np=cosu, —AW=sinu, pe/h=u, (A36)
Then (A33) becomes
Jd 1 a) Ju .
gL o)k _ _ , A37
(&z+ car) o HtmH (A7)
the sine—~Gordon equation, with
a, = 47°np*/hA. (A38)

The propagation of a pulse in a nonlinear resonant medium
is usually posed as a Goursat problem as follows: Given
€(0,¢), £ > 0, and given that at the initial time f = 0, the medi-
um is in the unexcited ground state b, that is,
A(z,0) =75(z0) +1=0, z>0, find e(z2), AV(z0),
7(z,t). (See Fig. 31.) Maxwell’s equation (A33) tells us
how ¢ changes along the characteristic + —z/c = const,
whereas the Bloch equations tell us how A" and 7 are updat-
ed for increasing ¢ at fixed z.
For the class of initial conditions

the general solution has the following features: it consists of a
finite number of kinks or 27 pulses,

u(z,t) = 4 tan~"' expyayyit — (z/¢) (1 + ¢/9%)),

gl
E=given L
=~ 1
[]

FIG. 31. Diagram for a pulse propagation as Goursat problem.
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(pe/h) (2,t) = HJagm sechfagn(t — (z/¢) (1 + ¢/n?)),
(A39)

a finite number of O pulses or breathers,

u(zt) =4 tan“(? sech 27

({1 +5753)

X sin 2§(t _ 5(1 - T(ETCIZT))) (A40)

and radiation modes which have a continuous spectrum and
are the nonlinear analog of solutions of the linearized equa-
tion (A37). Equation (A37) is in fact a soliton equation and
the initial value problem posed above is separable and can in
principle be solved exactly. The solitons (27 or Or pulses)
are so named because each carries an area

-‘IhiJ. edt=2mror0

for all values of z.

3. The on resonance, inhomogeneous broadening case

If ' #0, then again the initial value problem can be
solved exactly and again the initial profile decomposes into
O and 27 pulses [ very analogous to (A39) and (A40) ] and
into radiation.

The principal differences are as follows.

(i) The pulse is reshaped in a dimensionless distance of
order cI so that its area

A= % f €(z,0)dt

is an integer multiple of 27 (McCall-Hahn area theorem).
Note that as the linewidth I" -0, the area condition becomes
acondition which the initial data must satisfy as was the case
in the sine-Gordon equation discussed above.

(ii) The radiation is trapped in a dimensionless distance
of order (cI") ™! (Beer’s law). Thus the medium is only
“transparent” to the O or 27 pulses.

4. Homogeneous broadening

We now take account of losses in level population due to
spontaneous emission. One can introduce these losses phe-
nomenologically (as has been done in the literature) by pos-
tulating that the rate losses from levels a and b are linear and
proportional to 1y, and }y,, respectively. This would mean
thatthelossesofaa*, bb*,and ab* + a*bwouldbey,, ¥,,
andy,, = }(¥, + ¥, ), respectively. However, things are not
quite that simple [due to phonon interruptions by (defects)
in solids and by atomic collisions in gases] and in fact it turns
out that ¥,, > 1(¥, + ¥, ). In lasers, then, it is usual to treat
Ya»¥s» and ¥, as independent. In the situation discussed in
this paper, the b state is the ground state and so we do not
need the system to be pumped in order to keep the total
population in states a and b constant. In fact, in order to keep
the probability of finding the atom as either of the states a or
b, we must have
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aa* + bb* =1, (A41)
and thus aa* and bb * must satisfy
(aa*), = —y,(aa*), (bb*), =7v,aa*. (A42)

This being the case, we find the net damping of n = 2aa* — 1
to be

7, = —Y.(n+1). (A43)

It is not within the scope of this article to enter into the
details of how the loss rate of the polarization is calculated.
We will stipulate the loss can be described by adding — ¥, A
to (A19).

With the addition of these losses, the Bloch equations
are

A, = —2§A — QQi/h)Fpy — YA, (A44)

7, = (ip/h) (FA* — F*A) —y, (7 + 1), (A45)
and the Maxwell equation is

V2E — (1/¢*)E,, = — (4m0*/c*)P (A46)
where

P=(P,) (A47)
and

P, =1p(Ae™ " + A*et ™). (A48)

The sum ( ) is taken over the Lorentzian distribution
g(28) =T/m(T? + (26 — 2£,)?).

Ohmic losses can be introduced by adding the damping term
— (4m/c)oE, to the left-hand side of (A46).
We are going to solve these equations in the limit where

1260/ >T.

The detuning is large with respect to the linewidth of inho-
mogeneous broadening and so we can take I" = 0 and write
(A47) as

(A49)

(AS0)

P=1inp(Ae ™ + A*e™). (AS51)

The ¢ in the Bloch equations in now §,. The reader should
realize that the further the system is detuned (from the lin-
ear viewpoint), the larger will be the necessary nonlinearity
in order to have the response curve distort as so to produce
effective nonlinear resonance.

We are also going to assume that the homogeneous
linewidth y is large with respect to the change of the electric
field amplitude F(z,t) at a fixed value of z. This means that
we can treat F(z,t) as a slowly varying function of ¢ (slow
with respect to times 1/) in the Bloch equations (A44) and
(A45) and then the population inversion 7 and polarization
A can be computed by simply neglecting A, and 7,. In this
approximation, the polarization and population inversion
follow the applied E field adiabatically.'> We will continual-
ly return to query the uniform validity and self-consistency
of this assumption.

It is now easy to show that

4p* Yoo FF*
7,=_(1+L7’b

—1
e I
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2ip , 4p* Yo FF* )]“
A==E —iN|1+ 2122 - ,
hF[(y"b l )( TR A
(A53)
and
1 92E 2ka ) .
VZE___ —_ O(F — iwt F‘ iwt
gt A L The

Yab

—i Fe““‘"-}-iﬁL’-F*e*"‘")
A

Yab
A

21

X1+

4p® Ya» FF* )] -1
W PR ‘
where we have set the detuning
2;0 + a),b —w= — A. (ASS)

In all cases, we will take
A =0(10y)sec™!, ¥, ~¥,~O0(10%)sec™!, (A56)

and thus, for short lengths L, in the nonlinear medium
aol,/A — O(r), the attenuation is negligible. Let us rescale
the electric field as

)40
e }=y2t ), (AST)
h }’a (7’3[: + AZ) F F
whence (A54) is
1 %E  2ka E
VZE — — = 0 , A58
c* a2 A 14 2FF* ( )
where
E(r,t) = F(r,t)e " 4 F*e™, (A59)

The reason we took the carrier frequency w greater than the
two-level frequency is to ensure that we have a self-focusing
rather than defocusing medium.

5. The ring cavity problem

This problem is posed as follows. Consider the situation
shown in Fig. 1, in which a continuous input signal

E, =A(x)e— o 4 (%) (A60)

[the electric field is scaled as in (A57)] enters a nonlinear
medium through a partially transmitting mirror (7=10%,
R ~90%) at I. In the nonlinear medium, the electric field is
written

E = G(x,0)e"* =" 4 (»), (A61)

where G changes slowly with respect to the transverse direc-
tions x = (x,») and ¢. Note that F = Ge*. Using the slowly
varying envelope approximationin (A58) (the only term we
neglect is 3G /3t €w G /3t), we have, after rescaling z as
&= (2ay/A)z and writing r =t — z/c,

2iG, + (A/2ak)V?G — G /(1 +2GG*) =0. (A62)

Equation (A62) tells us how an input signal
G(¢ =0, 7 =1t,x) deforms along the characteristic ¢ — z/
¢ =7 =const due to the combined effects of diffraction
[ (A/2ay,k) V*G] and nonlinearity. We call the parameter
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Z=, Z=L £
=L|f|_z

FIG. 32. Electric field propagation in the ring cavity in the z-¢ coordinates.

f= 2ok /Au?, (A63)

where w, is the transverse width of the entering pulse, the
Fresnel number. The 7 dependence is governed by the condi-
tions applied to G at z = 0, the initial point of the nonlinear
medium. We emphasize that the relative change of G along
t — z/c = const is O(A/a,), which may be large in compari-
son to 1/7, and does not invalidate the adiabatic assumption.
As long as the change in G between characteristics is slow in
comparison to time 1/, the adiabatic approximation is fine.
After the signal has reached the end of the nonlinear
medium at z =L, or § = 2a,L,/A, it is redirected back to
the start by a pair of 100% reflecting mirrors at Kand Jand a
pair of 90% reflecting mirrors at H and I. Here we make a
rather artificial assumption; namely the pulse in the linear
medium /JKH undergoes no diffraction. In order to achieve
this situation experimentally a very special lens device would
have to be used. We shall ignore this difficulty and simply
stipulate that the electric field after returning to H is equal to
R times (two reflections) the electric field at 7 at the retard-
ed time
Ez=L,+ L, t,x)=RE(z=L,t—L,/¢c,x). (A64)

The problem then is this. Given E;,, beginning at =0,
determine the electric field E at the beginning z = 0 of the
nonlinear medium as #— . The special nature of the ring
cavity allows us to replace the continuous time variable t by a
discrete variable n. Why is this? Consider Fig. 32. The initial
envelopeatz = OforO <t <L /c (L /cisthesignal round trip
time) is given by

G (z=0,7=1x) =T A(x) (A65)

and is independent of 7. Hence G, is independent of 7 in the
bandO <t <L /C.ForL /C <t <2L /C, thereis a new initial
condition

G,(z=0,7=1tx) =T A(x) + Re*G,(z=L,, x),
(A66)

where the factor e*f

oML — (= Lo/e) _ o
E,(z=0,7=1t,Xx)

=TA(x)e "+ RE,(z=L,,r=1t—L,/c, x).

But (A66) shows that G,(z =0, 7, x) is independent of 7.
Therefore in each interval nL /c <t <(n + 1)L /¢, G, ., is
independent of 7~ and

G, (x,2=0) =T A(x) + Re"*G, (x,z=L,).
(A67)

arises from the phase shifts
fk(Li + L;) — it iy the carrier wave; i.e.,
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Our goal now is to find the function

lim G, (x,0)

n—co
if the limit exists.

Equation (A67) is an infinite-dimensional map from a
space of functions into itself. Given G, (x,0), one uses the
partial differential equation

2G,; + (1/f)V’G, — G,/(1 +2G,G*) =0 (A68)

to determine G, (x, 2a,L,/A) from G, (x,0). The map may
or may not have fixed points depending on the values of
certain parameters like a, = Max, T 4(x) and 2a,L,/A.
In fact, it exhibits all kinds of wild and wonderful behavior
which we will discuss in Sec. VII.

We insert one small but important remark about the
validity of the adiabatic approximation. It is clear that the
electric field envelope G(#,0) undergoes a discontinuity at
the points ¢ = nL /c, n =0,1,2,..., a discontinuity which is
carried across the characteristics  — z/c = nL /c. Clearly in
the neighborhood of these special characteristics, the field F
in (2.59) is no longer slowly varying and the adiabatic ap-
proximation is invalid. However, one can show that E makes
the transition across the discontinuity in a boundary layer of
order 1/ (y stands for either ¥, or ¥,, ). Therefore, as long
as the round trip time L /c is much greater than the homo-
geneous broadening time ', the adiabatic approximation
holds almost everywhere. It is important, however, to show
that the solution which incorporates the detailed behavior of
A, nacrossnL /c — 1/y <t <nL /c 4 1/y tends to the solu-
tion given in the previous pages in the limit y¢/L —0. The
proof of this was given by Aceves et al.!

APPENDIX B: MATHEMATICAL DETAILS FOR THE
LINEARIZED THEORY

In this appendix we describe the spectral theory of lin-
earization (5.7c). This theory forms the foundation of the
projections used to derive the reduced map on solitary wave
parameters. First we change to real notation:

G(y.z) =g(Oz)e" V722 9= 4y,
(Bla)
=U+1iV, = .
e=vew. 5=(Y)
Then linear equations (5.7c) take the real form
0 L_
w-1e L=(_5 7). (Blb)
where the Schrodinger operators L | are defined by
L_= —36+1-(1/A%)[1+N(SH],
L, = —3p+1—(1/A%)[1 +N(S?) +2N'(S2)S?].
(Blc)

The spectral theory of these Schrodinger operators is stan-
dard. They are of the form

(See Figs. 33 and 34.) Letting - o we see that the contin-
uous spectrum of the operator L is determined by that of the
skew adjoint constant coefficient operator
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FIG. 33. The graphs of potentials ¥, (8) of the Schrédinger operators
L, Asf-w,V, -1

0 —d 1
Lw=( aa+),
g — 1 0

and is the union of two intervals on the imaginary axis,
( —iow, —i]U[iiw). As for the discrete spectrum, we first
observe that 0 is an eigenvalue of L with multiplicity 2; in-
deed, the null space of L is given by

war-wnl(5)Q]

To see this, we calculate, using known properties of L _, ,
neN(L)<Ln=0
&L n,=0, L.n,=0
&n, =0, and 7, =0,5'

nmefQ 4ol

Thus two z-independent solutions of (B1b) are

R o W ]

These, of course, are equivalent to G ¥, G @in (5.8) as gener-
ated by the symmetries of space and phase translation. In
this real language the other twosolutions G **and G, which
grow linearly with z, are generated as follows. One considers
the null space of L 2 which, since L is not skew adjoint, is not
necessarily equal to the null space of L. In fact,

neN(L3)&Ln=0
&Ln = c,;g" + ¢,g®eN(L)

(%, 5)G)=el9 (o)
—L, 0/\n, 0
&L _n,=c,S' and L n, = —¢,S.
First, we consider
L_n,=§".

Since N(L_) = span{S}, this equation is solvablein L (R)
by the Fredholm alternative:

(B3a)

(S,L_n,) = (S5,5"),

0=§S2|g= — e =0.
Indeed,

n2= —%95,

as can be checked by differentiation. Similarly, since
N(L, ) =span{S'},

L+n1 =S

(L_Synz) = (SyS’)x
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| o(L-)
FIG. 34. The spectra of the oper-
E ators L .
| ol
is solvable, and
n] - — i(aSG +/‘LSA ).
Thus we obtain
o) (ose +,1sl)]
2y __
N(L*) _N(L)USPan[(GS , 0

= span{n’,n?,n®,n¥}. (B3b)

From these we generate two more solutions of the linear
problem (B1b)

g¥=m® _n® g¥—=m®4n9,
as can be quickly checked:

(2 az _L)g(3) — (2 az —L) [zn(l) - n(3)]

— 2n(l) _ an(l) + Ln(S)
=0)+(_2, %))
N —L, 0/\6s

_ (L_(es) + 2.9) _ (0)
- 0 “\o/

with a similar calculation for g*.

Notice how elements in N(Z ?) which are not members
of N(L) generate solutions of the linear problem which grow
linearily in “time” z. If N(L ?) contained functions which
were not in the N(L 2), they would generate additional solu-
tions of the linear problem which would grow quadratically
in z. However, we have

N(L?*) =N(L?),
because
neN(L*)<L*n=0
oLn = Cln(l) + Czn‘z’ + C3n‘3’ + C4n(4)
&L _n,=C,S" +C,(6S, +AS,) and
— L n, =C,S + C5(69).
Now the second equation in this pair,
—~ L n,=C,S+ C5(69),
is solvable if and only if
(S',C,8 + C3(68)) = C5(5',6S) = — C5(5,5) =0,
that is, if and only if C, = 0. The first equation
L_n,=CS'+C,(0S; +45;)
is solvable

(B3c)

Adachihara et a/. 82



<’-‘>(S,CIS' + C4(0S9 +/lS/1 )) = O
SC,[ —1(S,5) + (S485;)] =0.

We would like to conclude that C, = 0. For the Kerr case,
this follows from the fact S(8,4) =4 sech &

a,[ - %(&S) + (SAS, )]

- 04[/1 2(1 . -;-) f sech? § da]

= 0¢:>‘C4 = 0.
For the case of saturable nonlinearity, we have checked nu-
merically that [ —1(S.S) + (S,AS;,)]#0, and hence
C, = 0. This shows N(L *) = N(L ?) for the two cases stud-
ied here.

Summarizing the situation, we are constructing a com-
plete set of solutions of linear problem (B1b),

2g, =Lg,
by studying the spectral theory of the operator L. So far, we
understand that the continuous spectrum of L resides on the
imaginary axis and therefore yields solutions of (B1b) that
are bounded in x and oscillate in z. In addition 0 is in the
point spectrum of L and generates exactly four solutions of
(B1b), two of which are independent of z and the other two
grow linearly with z. Actually, since L is not skew adjoint, we
must develop a biorthogonal expansion based upon eigen-
functions of LT as well as of L. The representation

0 —L
+ +
L _(.L_ 0 )
Lt =JLJ, J=(O _1),

1 0

shows that if ¥ is an eigenfunction of L with eigenvalue E,
then J4 is an eigenfunction of L' with eigenvalue — E. In
particular, we have

N(L1?) =JN(L?). (B3d)
We can label the elements of these null spaces as follows:
N(L '?) =span{a‘?, i = 1,2,3,4},

) (Bda)
N(L?) =span{A®, i=1,2,34},
where
a0 — (o A=y, (( 1/,1)055 + SA) ,
0 0
@ __ @
2 ( s, ) A "”(es)’
s (B4b)
G _ G e
a (5) A ( 0 )
@ _ 4 _
2 ((1/&)083 +SA)’ AT =74 )
If we choose the constants ¥, 75 as
2
Va = ’
(— /A +3/34)(S,S) (Bdc)
vYe = 2/(8,5),

these are paired in a biorthogonal fashion
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(a®,AP) =6, (B4d)
Again consider the linear problem (B1b),
2g, =Lg,
and define the quadratic form as
Q(g) = (g.JLg) = (L. g:1.8&:) + (L_g2»8>)- (B5)

If g(2) satisfies the linear problem (B1b), then the quadratic
form Q (g(2)) is an invariant:

%Q [8(2)] = 2L gugy) + 2(L_gaa)

= (L,g,L_g) + (L_g—L,.g)=0.

This invariant quadratic form Q[g] is similar to the H, norm
of g, as integration by parts shows:

0(g) = (L ,81,81) + (L_g283)
=([ — e +1— (1721 U, ]81:81)
+{[ =8 + 1 = (1/A7)U_]2,.85)
= (g1.81) + (21.8)) — (1/A?)(U,8,.81)

+ (85:85) + (8282) — (1/A%)(U_gr8,),  (B6)
where the postive functions U, are defined by
. 2
U_=1+N(S?), (B7)

U, =1+N(S? +2N'(S?)S%

We would like to use this quadratic invariant Q(g) as a
norm; unfortunately, it is not positive definite due to the
attractive potentials — U, . Indeed, letg, = (5,0), where b
is the negative energy ground state of L with eigenvalue
~ |Eo|. Then

0(g,) = (L b,b) = — |Eo|(,6) <O.

In a related consideration, we compute this quadratic form
on the four solutions g'” of the linear problem (B1b):

gy =(L,.S’ s>—(OS)-

Q(g?) = (L_S5,S)=(0S) =
¥ (@)=0E"z=0)= Q( —n®)

= (L_08,0S) = ( — 25',05) = (S.,9),
2(2¥(2))= Q& (0)) = Q")

= (L (6Sy + AS5,),05, +4S,)
= — Z(S,HSQ +ASA)
= (5,8) —2(S§,AS;) <0.

Notice in particular that g, g?, and g are badly behaved
with respect to Q( ).

In order to use the quadratic form Q(+) as a norm, we
must work in a slightly smaller space than H,~—one orthogo-
nal to N(L '?). We decompose H, as follows:

=MeN(L?), M= [HN(NL )] (B8)
That is, for each geH,, we write
4
g= 2 aiAm + 8am»
fam 1
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where

a; = (a"g),
which implies

g IN(L1?).

Because the splitting (B8) was defined using the bior-
thogonal pairing (B4a), L acts invariantly with respect to
this splitting,

L: N(L*)-N(L?)
LT N(LT) SN,
L: MM,
as can be quickly checked:
geM= (a,g) =0
=(a¥,Lg) = (Lta"g) = (ic,-,-a‘”,g) =0.

V=1

(B9)

1

4
g(N)(z) — Zai (Z)A(i)

i=1

4 4
= 3 26,()A = Y &, ()L A,

i=1 i=1

This invariant action of L as described by (B9) guarantees
that L does not couple the subspaces M and N(L ?) and that
splitting (B8) is consistent with the z evolution. That is, the
initial value problem,

8l.—o =heH,,

can be split into two completely decoupled problems,
28 =Lg™, g™| _ —h™, (Blla)
2gM =Lg™, g™|,_o=h", (B11b)

where g™ and h™eM, g and h™MeN(L 2),
g=g™ 4+ g™ h=h"™ 4 hM™,

h™ — i (a‘”,h)A“), ™ — h — ™M,

i=1

2g, =Lg, (B10)

Because the dimension of N(L ?) is 4, Eq. (B11b) is really a
fourth-order ordinary differential equation. Here this finite-
dimensional system is trivial:

4 4
=2, =0, 20,=0, 2a;= Y a;(2){L *a®A?) = ¥ 2a,(2)(a®A?) =2a,,

i=1

4 4
26.14 — Ea‘_(z) <L +a(4)’A(|')> —_ z %ai(z) (a(l),A(i)) = Ial’

i=1 i=1

=a,=0, @,=0, a=a,

On M, Eq. (Bl1a) is still a partial differential equation;
however, we can control g™ (z) using the quadratic invar-
iant. For, on M, we have the following.'®

Theorem: 3C,, C,> 0, YgeM,

0<C,llgli} <Q(g) <Cligll}- (B13)

This is an extremely useful result. For example, it can be
used to establish the linearized stability of the solitary wave
G, to perturbations of the initial data. By definition of linear-
ized stability, one must control g(z) Vz, where g(z) satisfies
the initial value problem

LS

FIG. 35. The spectrum of L: con-
tinuous spectrum lies in
(—iw,—i]U[4iw) and a
point spectrum at A = 0.
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dy=ay/A, a;(0)={(a"h),
:g(N)(g) — (am,h>A(1) + <a(2),h>A(2) + [<a(2)’h>z + (a‘:”,h) ]A (3) + [(a(l),h>z/ﬂ + (a(4)’h> ]A (4)-

i=1

2

i=1234,
(B12)

V' 2g =Lg g(z=0)=heH,.
Using splitting (B9),
g=g"V+G, h=h"+H,
where G,HeM and satisfy
2G,=LG, G_,_, =HeM.
We use (B13) to control G(z) Vz: Consider any € >0, and
assume
[H|IT < (C/Cy)e.
Then
Cie> G|[H[l > 2(G(0)) = Q(G(2)) > C4||G(2) ||}
=>G@)| <«

Thus the only growth of g(z) comes from the four-dimen-
sional system for g™ and is at most linear in z as (B12)
shows.

Much more can be obtained from estimate (B13). It
shows that on M, the quadratic invariant may be used to
define a norm which is equivalent to the A, norm. Now M
can be turned into a Hilbert space, with inner product

(gh)y = (gJLh). (B14)
With respect to this “energy” inner product, L is skew ad-

joint:
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(gL h)y = — (Lgh)y. (B15)

Thus on M the spectrum of L is purely imaginary. A com-
pleteness theorem and an eigenfunction expansion are at our
disposal. The spectrum of L is summarized in Fig. 35.
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The wave equation ¢*(x)u,, — u, = 01is solved for wave speeds c¢(x) corresponding to two-
layered media with smooth transition from layer to layer. The wave speed ¢(x) has four free
parameters to fit a given medium. Solutions are constructed from invariant solutions of a
related system of first-order partial differential equations that admit a four-parameter
symmetry group. These solutions are superposed to solve general initial value problems for
data with compact support; the computation of the superposition coefficients uses elementary
Fourier analysis. Solutions are illustrated for various initial conditions.

I. INTRODUCTION

In a previous paper’ we classified all wave equations of
the form

(L.1)

which are solvable by group theoretical methods. In particu-
lar, we showed that the system of partial differential equa-
tions

2
c“xu, —u, =0,

(1.2)

equivalent to Eq. (1.1), admits a maximal four-parameter
Lie group of point transformations if and only if the wave
speed c(x) satisfies the ordinary differential equation

2
UVy=U,, U, =c¢ (X)Ux

(1.3)

If 4 =0, the solution of Eq. (1.3) reduces to either
c(x) = e*orc(x) = x*, where A4 is an arbitrary constant. In
Ref. 1 we constructed the corresponding invariant solutions
of (1.2).

If £ #0, Eq. (1.3) reduces to one of the following four
standard forms’:

cc’(c/c')" = const = .

p=1
¢ =v~lsin(vloge); (1.4)
¢ = v~ !sinh(vlogc); (1.5)
¢ =logc; (1.6)
p=—1
¢’ =v~!cosh(vlogc); (1.7)

where v#0 is an arbitrary constant. Solutions of (1.1) and
(1.2) are discussed in Ref. 2 for ¢(x) satisfying (1.5) or
(1.7) withv =1,

If c(x) = ¢(x,v) is a solution of any one of the equa-
tions (1.4)—(1.7) then the corresponding general solution of
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Eg. (1.3) is given by
c(x) =K¢(Lx +Mpy),

where K 2L ? = |u| for any constants {L,M,v}.

For each of the equations (1.4)-(1.7) solutions c(x)
are monotone functions of x; ¢(x) is bounded on ( — «,®)
if and only if c(x) satisfies Eq. (1.4). Such a bounded c(x)
has a smooth simple jump (cf. Fig. 1). This corresponds to
wave propagation in a two-layered stratified medium with a
smooth transition from layer to layer.

In the rest of this paper we construct various invariant
solutions of system (1.2) and hence solutions of (1.1),
where the wave speed c(x) satisfies (1.4); without loss of
generality v > 0. We show how to solve general initial value
problems by a superposition of these invariant solutions. We
illustrate our results by solving initial value problems for
initial humps of varying shape and location.

(1.8)

Il. PROPERTIES OF c(x)
Say ¢(x) solves (1.4). Then |¢’(x)|<1/v,and ¢’ (x) =0
if and only if

c(x) =", k=0,+1,+2,... Q.1

30 — T T —T

-50 0 50 100

FIG. 1. Profile of c(x) = ®(x,v).
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Now consider the region where
1<c(x) <e™. (2.2)

In this strip ¢’ (x) > 0 and the inflection point x = x* occurs
where c(x*) = e™*; ¢'(x*) = 1/v. Equation (1.4) leads to

/v

fim _ % 4w, 2.3)
e-0* Jov  sin(v logc)
and
7/ 2 d
lim i (2.4)

e~0* Jy ¢ sin{vlogc)

Hence it follows that lim,_ , _ c(x)=e™",
lim, __ c(x) =1 Thus ¢=1, c=¢™" are horizontal

asymptotes for c¢(x) in the strip (2.2). Since Eq. (1.4) is
invariant under translation in x, without loss of generality
we can set x* = 0.

Now let

c(x) =P(x,v) (2.5)
be the solution of Eq. (1.4) with properties

i lima° P(x,v) =1, (2.6)

x liTw ®(x,v) =™, 2.7

D(0,v) =™ (2.8)

One can show that Eq. (1.4) has solutions

c(x) = e~ "*B(( — 1)"e"x,v) (2.9)
on the horizontal strip

e <e(x) <e" T, (2.10)

n=0,+1,+2,...

From property (1.8) it follows that each strip solution
leads to the same general solution of Eq. (1.3). Thus from
now on we will only consider the solution c(x) = ®(x,v) of
Eq. (1.4).

Graphs of @(x,v) and (d /dx)P(x,v) are given in Figs.
1 and 2, respectively, forv=1, 1.4, 2.

1.0 .
Toe v =1
MippLe v =1.4
Bortom v =2
0.5 ¢ 4
6.0

-50 0 50 i00

FIG. 2. ¢' = ®'(x,¥).
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Here ®(x,v) has asymptotic properties,

P(xv)=1+4+C (v)e*+o(e*) as x—~» — w, (2.11)
O(x,v) =™ [1 —~ C*(v)e— ¢~ 7"%]

+ole=“""7% as x— + oo, (2.12)
®(x,v) =™ 4+ x/v+0o(x*) as x-0, 2.13)

for some positive constants {C ~(v), C *(v)}.
To obtain a bounded monotonically increasing solution
c(x) of Eq. (1.3) with the properties

lim c¢(x)=¢, (2.14)
lim c(x) =c,, (2.15)
X+ 4 o0
and
max c¢'(x)=m, (2.16)

x€( ~ 00,00)
where {c,, ¢c,, m} are arbitrary positive constants with
0<c,<c, wesetin (1.8),

K=c¢,, L= (m/c)v*,

v =v* = r(log c,/c;) L.

The general solution of Eq. (1.3) satisfying (2.14)-
(2.16) is

(217)

c(x) = P((m/c))v*x + Mn*), (2.18)

where M is an arbitrary constant.

The width of the transition region in x is O{(¢, — ¢;)/
m). Since ®(x,v) exponentially approaches its horizontal
asymptotes, a wave speed c(x), represented by (2.18), effec-
tively approximates a two-layered medium. The transition
between layers can be as abrupt as one wishes.

lIL. INVARIANCE PROPERTIES OF SYSTEM (1.2)

As shown in Ref. 1, when ¢(x) satisfies (1.3) foru >0,
the system (1.2) admits the four-parameter {p,q,7,s} Lie
group of point transformations

X =x+e(x,) + O(e),

T=1t+er(x,1) + O(€%),

U=u+eli(x,t)u +j(x,t)v] + O(€),

V=uv+elk(x,t)v+ l(x,t)u] + O(€?),
where in terms of

B(t) =pe' —ge™", (3.2)
{&,7,4,jk,0} are given by

§=28"(O[c(x)/c'(x)],

T=28(0{c(x)/ (X)) —1] +1r,

i=B" ()2 —{c(x)/c(xX))] +5,

J= —B®)[c(x)/c'(x)],

k= —B'()cx)/c(x)] +5,

I= —B()[1/e(x)c'(x)].

The group generators for the parameters {p,q,7,5}, re-

3.1

(3.3)
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spectively, are

2¢c 0 c)' ]8

L =é|———+2 —11=
i e[c 8x+[(c at
9

-G

3.4)

The commutators of the Lie algebra are
[LpLy] = — 8L,, [L..L,] =L,

[L,L,]=—-L,, [L,L]= [LgL.] = [L,.L,] ‘”‘(-30'5)

The global transformation generated by (3.1)-(3.3) is
found by solving the characteristic equations

dX _ dT
XN (XD
_ dU
X,DU+ X,V
= av == dE, (3.6)
kX, DV + I X,THU
where
X=x, T=t Us=u V=v ate=0. 3.7

The global transformation for 30 is obtained from the glo-
bal transformation for 7 = 0 by letting £~ ¢ + r. Without loss
of generality weset 7 =0.

Now let

(B —-p>
Then the resulting implicit global transformation is
z=p(T)sin Y,
[[e(X)) 12U + [e(X) ]2V ]?

= [4e**sin Y 1 [B(T)cos Y + B'(D)],
[[e(XO]72U - [e(XD)]V?V )

= [Be**sin Y ] [B(T)cos Y — B’ (D ];

Y=vloge(X), y=4pg= (3.8)

(3.9)

and

(1/v — ¥)log|cos Y + (1/4 — y)B'(T)sin Y|
=E—2¢ for y<0,

(l/v\/—)arctan[ﬁ‘/_n

(3.10)
cot Y] =FE -2 for y>0.
(3.11)

88 J. Math. Phys., Vol. 29, No. 1, January 1988

The integration constants {z,4,B,E} are expressed in terms
of {x,t,u,v} by using the initial condition (3.7). Without loss
of generality y =1ify>0,y= — 1if y <0.

Now we construct invariant solutions of system (1.2)
forr=0. Let

y=vloge(x). (3.12)
We choose the invariant

z=P(t)siny (3.13)
as our similarity variable.

By setting A = A(z), B = B(z), we obtain from (3.9)-
(3.11) invariant solutions of the form

u=e~**I[e(x)|siny|]'2[|B(t)cos y + B’ (£)|"/?A4(2)
+ |B(t)cos y — B'(1)|'*B(2) ], (3.14)

v=e""=P[[c(x)]|siny|]/*[|B(t)cos y
+B'(1)|M?4(2) — |B(t)cos y — B'(1)|'/*B(2)1,

(3.15)
where
€(x,t) = (1/2v)logjcosy + B'(t)siny| for y= —1,
(3.16)
and
e(x,t) = (1/2v)arctan[cot p/B'(¢)] for y=1. (3.17)

The substitution of (3.14) and (3.15) into the system
(1.2) leads to a coupled system of first-order linear ordi-
nary differential equations for A(z) and B(z). The form of
these ODE’s depends on the signs of y and
B(t)cosy +B'(1).

If y = 1, then either

B(t)cosy +B'(t)>0 and B(t)cosy —B'(t) <0
or
B(tycosy +B'(1) <0 and B(t)cosy—B'(£)>0

for all x, ¢.

Ify = — 1, thenforany givent bothS(¢t)cos y + B'(t)
and B(t)cos y — B'(r) change sign once as x varies from
— o 10 + 0.

It is convenient to let

A(z) = (sgn[B(t)cos y + B'()]) f(2),

3.18)
B(z) =g(2). (
Then { f(z),g(z) } satisfy the system
2(22——1)d—f+[—i+(2——s—)z]f
dz v v
— (1/v)|22 - 1|V?g =0,
( ;)I |'g (3.19)
2(z2—1)—g-+[i+(2—i)z]g
d v v
1 22—
+—= Izz |l/2f 0
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if y = — 1, and satisfy the system
1
N R L P a3 P
(3.20)
2(22 + 1) + [2z+ ]g+ VZ+1f=0,
The invariant solutions for ¥ = — 1 are not valid for all

t> Osince (3.19) has a singular point atz = 1. For the rest of
this paper we consider solutions of system (1.2) for y = 1.

IV. INVARIANT SOLUTIONS OF SYSTEM (1.2) FOR y=1
A. The general solution of (3.20)
Let
=1/2v,

o= —s/2v. 4.1)

Then f(z) satisfies the equation

2f+ 3z df 1
Z2+1dz z2 1

02+az]

1 2 T2 =

[+R Z+1 /=0
(4.2)

and

Sl sl

The general solution of (4.2) is

— io/2
=C(L_J
1+iz
XF(1 +iR,1 —iR; 3 — io; § (1 + iz))
+ C2(1 +iz)‘”2(22 + l)ia/z

XF(+i(0+R),}
+i(e—R); 3 +ioy} (1 +i2)),

g(2) = (4.3)

f2)

(4.4)

where F(a,b;c;z) is the hypergeometric function,® C, and C,
are arbitrary constants.

Let
¥(z) =log(z+VZ + 1) (4.5)
and
W) =VZ¥1f(2).
Then (4 2) transforms to
__0”+osinh ‘P] _
d‘l’2 [ cosh® ¥ f=0. (4.6)

B. Closed form solutions of (3.20)

Now we construct closed form solutions of (4.2) and
(4.3) for various values of o. From (4.5) and (4.6) we see
that for o =0,

=z = (1/VZZ + 1)cos[R¥(z) + £ ] 4.7

solves (4.2) for any real constant £. Correspondingly, from
(4.3) one gets

g=80(z£) = — (I/NZ +1)sin[R¥(z) + ¢ 1.
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(4.8)

Now consider the raising and lowering operators

d (1=21)z+i
Lt*A) =+ 14— T 4.9)
dz 2WZ+1
_ d (1+20)z—1i
L-W)=yZ+1 —4 -T2 (4.10)
dz 2,[?.{_1

One can show that if f = f; (2;{) solves (4.2) foro= — A,
then

S=LT(A)fi(z8) (4.11)
solves (4.2) foro = —i(4 + 1), and
Sf=L (D), (z8) (4.12)
solves (4.2) foro = —i(A —1).
For o= —in, n=1,2,..., recursively we can obtain
closed form solutions
f=f(z) =L *(n—1)f,_,(z5), n=12,.,
(4.13)
for (4.2) from f,(z;{) defined by (4.7).
From (4.3), the corresponding solution is
o FZEI[dhED | z—in, ]
g_gn(z:g)— R dZ zz+lfn(z’§) .
(4.14)

From (4.7)-(4.11), it then follows that
L=(n)f,(z£) = —3{[(2n— 1)+ 4R?1 £, _, (z:5),

n=12,... (4.15)
Using (4.13)—(4.15), one can show that
Sas1(z8) =(a(n,2) R ) f;t(z;;)] (4.16)
8n+1(Z:6) —R  a(nz)/ 18.(z6)
where
a(nz) = —(n+Plz—-dANZ+1], n=012,.,

and a(n,z) is the complex conjugate of a(n,z).
Let

& = arccot z.

Then

a(nz) = — (n+4)e"".

In computing { £, (z;£).g, (z;£)} it is useful to note that

L@ (A(n,z,R) B(nz,R) ) o (z:E)
8, (z:5) — B(nz,R) A(nz,R)/ 18(z5)

(4.17)
for functions 4A(n,z,R) and B(n,z,R) determined from
(4.16), n = 1,2,... . Further details on {f, (z;£), g, (z:£)}
are given in the Appendix.

Say Aisreal. Thenf = f, (z;{) solves (4.2) foro = —id
if and only if the complex conjugate of f; (z;{), namely
f= fi(z;£) solves (4.2) for o=Iil. Consequently, for
o =in, n = 1,2,..., we have closed form solutions

[=f_.&z5) = f,(z5),

=g_,(z0) = g,(z0),
for system (3.20).
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Moreover if A is real, using (3.20), one can prove that
| £z + |81 (0

_const _ |fi(0:0)” + 184 (0:5)]?

142 142 '

Other sequences of solutions are found by the standard
technique of using the raising and lowering operators (4.9)
and (4.10). Namely we first find functions f which satisfy
(42)and L ~(A)f=0o0r L *(4)f = Ofor particular values
of A = io. For the lowering operator L ~ (A1), resulting solu-
tions are

f=_7i = (I/J?Tl‘)e(i/z)[armnzzpmog(z’+l)] (4.19)

for A =1 4 iR. For the raising operator L * (1), solutions
are

(4.18)

f=}'i = (l/m‘f)e—(i/2)[urctanziRlog(z’+l)] (4.20)
for A= —}4iR. Sequences of  solutions

{f&. fE.Ft 0 {foi,}'f l,}"fz,...}, are then obtained
as follows:

FE =L *(n+}+iR)fF (4.21)
forA=n+3+iR,n=0,1.2,.,and
Fir, =L (n—}+iR)fZ (4.22)

forA=n—31+iR,n=0,—1,-2,...

C. Properties of solutions (3.14) and (3.15)

Since the solutions (3.14) and (3.15) depend on simi-
larity variable z we examine the similarity curves

z=const = B(t)siny = B(¢)sin[vlog c(x)], (4.23)
where
B(t)=pe' —ge™', pg=1}. (4.24)

We consider solutions for te( — o0, 00 ). Then without loss of
generality we can set p = g = } by a suitable choice of initial
time ¢, so that

B(t) =sinh ¢ (4.25)

10

~-20 0 20 40 60

FIG. 3. Similarity curves z = (sinh #)sin(v log c(x)}. Nine similarity curves
are plotted for v = 1.4. The corresponding values of zarez = 10" withn = 3
(topline),2,1,0, — 1, — 2, — 3, — 4, — 5 (bottom line). The dashed line
represents the profile of ¢(x) for v = 1.4.
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~-20 o] 20 40

FIG. 4. z as a function of x; z is plotted as a function of x for v = 1.4 and
selected values of £: ¢ = 1 (top), 2, 3, 4, 5 (bottom).

Representative similarity curves are plotted in Fig. 3 for var-
ious value of z for v = 1.4. For various values of ¢, curves

z(x,t) = sinh ¢tsin[v log c(x)] (4.26)
are plotted in Fig. 4 for v = 1.4. Note that z(0,t) =sinh ¢,
lim,  , , z(x,t) =0 and hence for fixed ¢, the range of
z(x,t) is (0, sinh ¢] if t >0 and [sinh ¢, 0) if £ <O.

Consider the asymptotic properties of the similarity
curves

z=sinh¢sin[vlogc(x)] =const as t— + co.
From (2.11) and (2.12), along such curves we have
x~ —(t—log[2z/vC ~(v)])
x~e™(t —log[2z/vC *(v)]) if x>0.
Henceast— + o thesimilarity curves are asymptotic to the
characteristic curves of the wave equation (1.1) or system
(1.2). For comparison with the similarity curves of Fig. 3,
characteristic curves are plotted in Fig. 5 for v = 1.4.

Next we consider properties of { f(z),g(z)}. First of all
note that f(z) and g(z) are analytic in z. For any o, as

if x<0;

10

-20 0 20 40 B0

FIG. 5. Characteristic curves, defined by dx/dt = + ¢(x), emanating from
the x axis, are plotted for v = 1.4.
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|z| = o0, from (3.20), { f(2),g(2)} satisfy

zd_f+f_Rg=0, zif+Rf+g=0. (4.27)
dz dz
Thus
~u* R1 *],
f(z) ~ (u*/z)cos[R log|z| +p*] (4.28)

g(z) ~ — (u*/2)sin[R log|z| +p*],
as z— + oo for some constants {u*u~ 0% ,p"}. Thus
{f(2),g(2)} exhibit oscillatory algebraic decay as |z| — .
In the Appendix, g+ and p* are computed for
{/.(z8).8, (D)}

Now consider properties of €(x,¢) defined by Eq. (3.17)
with #(z) =sinh ¢, i.e.,

€(x,t) = (1/2v)arctan[sech ¢ cot y]. (4.29)

The range of e(x,t) is ( — w/4v,m/4v) for any t. If o
= —5/2v =0, + io,, then for any ¢ =t * the number of
oscillations with respect to x in a real solution
{u(x,2*),v(x,t *)} due to the factor e ~*****) js the integer »
such that

n<ilo,| <n+1, (4.30)

and for any x = x* the number of oscillations with respect to
t in a real solution {u(x*t), v(x*)} due to the factor
e~ %% is the integer m such that

m<}|o,| |} — (v/m)log c(x*)| <m + 1. (4.31)
Furthermore,
Lz _,|=L]7_
w0 =5 |5 -y = [ - veseta].
(4.32)
€(0,t) =0, (4.33)
lim e(x,t) =0, (4.34)
- + o
and
lim e(x,t) = F (n/4v). (4.35)
X— + oo
Atr=0,
u(x,0) = e ~**[¢(x)sin[v log c(x)]]/?
X[A0) +g(0)], (4.36)

v(x,0) = e =D [c(x)]~2[sin[v log c(x)]]'/?
X[ A(0) —g(0)],

where €(x,0) is given by (4.32). In both the real and imagi-
nary parts of (4.36) the number of oscillations with respect
to x is the integer n given by (4.30).

Atx =0,

u(0,t) = e Jcosh ¢ [ f(sinh ¢) + g(sinh )],

(4.37)
v(0,t) = e~ "*Jcosh ¢ [ f(sinh t) — g(sinh ¢)].
Thus {2(0,¢), v(0,2) } are finite in z.
Moreover,
lim u(x,;)= lim v(x,t)=0. (4.38)
X— + oo X— + o
Let
O(x,t) =R[|t| + log[}sin y]]. (4.39)
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Then as t— + oo, x fixed,
u(x,t) ~2u* [c(x)/sin y]}/%e ~ 1/

Xcos[O(x,t) +iy+p*],

(4.40)
v(x,t) ~2u* [c(x)sin y] ~V/2e 2
Xcos[O(x,t) —4y +p*].
Ast— — o, x fixed,
u(x,t) ~2u~ [c(x)/sin y]/%e* 7
Xsin[O(x,6) —4y +p71, (4.41)

v(x,t) ~ — 2u~ [c(x)sin y] /%2

Xsin[O(x,t) +1y+p~].

More importantly as t— + oo along a similarity curve
z = const, one can show that if x <0, then

u(x,t) =2z == VIf(2)[1 + (z/v)e~ "+ o(e™ "],

v(x,t) =2z eI [1 — (z/v)e '+ 0(e™ ) ];
(4.42)

if x > 0, then
u(x,t) —_ JEeW/ZVe—anmn(l/z)
Xg(2)[1— (z/v)e~"+o(e™ ],
v(x,t) = _‘/Ze—ﬂ/ZVe—amtan(l/z)

Xg2)[1+ (z/v)e~ +o(e™H)].

(4.43)

V. SUPERPOSITION OF INVARIANT SOLUTIONS;
SOLUTION OF THE INITIAL VALUE PROBLEM

By superposing invariant solutions, general initial value
problems (IVP’s) of the form

u(x,0) =U(x), v(x0)="V(x), — o<X<oo,
(5.1
for system (1.2), and
u(x,0)=U(x), u,(x,0)=W(x), — o0<X<0c0,
(5.2)

for Eq. (1.1), can be solved. Solutions u(x,) of (1.1) and
(1.2) are identical if

Wix) =cA(x)V'(x). (5.3)

Foro= —2mi,ie,s=4vmi,m =0, + 1, + 2,...,con-
sider invariant solutions (3.14) and (3.15) of system (1.2)
u= um (x’t;§2m )’ V= vm (x’t;§2m )’
um (x’t;§2m )

= exp( — i2m arctan[cot y sech ¢ ])[¢(x)sin y]'/?

X {[cosh t + sinh ¢ cos y]'/%f,,, (255, )

+ [cosh t —sinh t cos y]'/%g,, (z:L,.)),  (5.4)
Slny 172
V,, (X,8;55,, ) = exp( — i2m arctan[cot y sech ¢ ])-[—(——)
c(x

X {[cosh ¢ + sinh  cos ¥]/%f,,. (Z;£2m )

— [cosh ¢ — sinh ¢ cos y]1'/%g,,, (z;( o)}
(5.5)
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where { £;,, (2,£),82m (z:£) } are defined by (4.7), (4.8), and
(4.16).

Att=0,
Uy (2,065, ) = (— D™ [c(x)sin y1* [ fo (0:6 2 )

+ 82m (03521 ) ] €™, (5.6)
Uy (6,083, ) = ( — D™[sin y/e(x) ]2 [fo (0:62,)

~ 8am (0:52m ) ] €7™. (5.7)

For solving an initial value problem it is necessary that
& _am = £a - Note that 0 <2y < 27. We let a superposition
of invariant solutions,

uED = 3 Aty (tilon),

" (5.8)
2 Amvm (x’t;gbn )’

represent the solution of the initial value problem (5.1) for
system (1.2). The constants {4,,,£,,, } are to be determined.
In practice we determine {4,, cos &,,,, 4,, sin{,,, } due to
the form of (5.8). Clearly 4 _,, = A ,, since u(x,t) and
v{x,t) are real.

The initial condition (5.1) and (5.6)~(5.8) lead to the
following Fourier series representations:

U(x)[c(x)siny] "2 = i B, &%,

” 172 e (5.9)
V c(x)] - - C ei2my’
) [siny m ; .
where
Bm = ( - I)m{f'Zm (0;§2m) +g2m (0;§2m)}‘4m’
Cm = ( - l)m[ern (O;é‘m) — &2m (0;§2m ) ]Am’ (5~10)
m=0,+1,+2,.,
8, =L [(e-mmuixe—tsinn1 =
me (5.11)

Co =L ["e=mmpixilelsiny) 2 a5,
T Jo

where x and y are related in a 1:1 manner by y = v log c(x).
This completes the solution of the IVP (5.1) of system (1.2).
The convergence properties of the Fourier series (5.9) de-
pend on the nature of the functions U(x) [c(x)sin y]~'/?,
Vix)[c(x)/siny]V2 Iflim, ., U(x) =lim,_ , . V(x)
=0, U(x), V(x) bounded on ( — w0, ) then the series
(5.9) converge in the mean.

See the Appendix for general expressions for { £, (0;£)
+ 8., (0;£)} and discussion of the algorithm to compute
(5.8).

Now we give the algorithm to find the Green’s functions
(G (x,£,1),K,(x,£,1)), i = 1,2, for the initial value problem
(5.1). Here (u,0) = (G, (x,£,1), K, (x,€,t)), i = 1,2, satisfies
(1.2), and

G](x;é.ro) = 6(X - §), Kl(xyg:o) = 0;
Gz(x,gao) = 0’ K2(xs§’0) = 6(x b §)'
In terms of these Green’s functions, the solution of the IVP

(5.12)

92 J. Math. Phys., Vol. 29, No. 1, January 1988

(5.1) for system (1.2) may be formally represented as

“= f T G (REDUE) + GalxENVE) 1dE,
o (5.13)
b= f (K, (x£D UE) + Ka(x.£1) V(E) 1dE.

In computing the coeflicients for (G,,K;) we set C,,
=Cl,, B, =B, A, =4}, §3n =(%n, i=12. Then
(5.11) gives

cl =0,

B ’1" = __1_ [C(g) ] -3/2[sin[v lOg C(g) ] ]1/2e - l2mvlogc(§)’
4 (5.14)
C% =c(&)BL,
B2 =0.
Now from (5.10), (5.14), (5.8), (5.4), and (5.5) it follows
that {G,, K,, G,, K.} are of the form

Gy (x£1) = [e(€)]17>*[sin[vlog ¢(£)]"*]

"o
a:ne—- ﬂmvlogc(g)U’ln (x,t),

m e - oo

K, (x,£8) = [c(&)]1 7 *[sin[v log c(£) 11"/

o0
X S blLemrminc®pl (xr),

mes - oo

G,(x£,1) = [c(£)] 7 ?[sin[v log c(£)]1]1'?

(5.15)

d
% 2 afne-—x'zmvlogc(g)U,z" (x,t),

me= — oo

K, (x,£,t) = [c(&)1V*[sin[v log c(£)]]"?

X i b'Z"e—-nmvlogc(;)V%n (.X,t),
T (5.15)

where the constants {a’,,b, } and the functions {U", (x,?),
Vi (x,t)},i= 1,2, are independent of £.

Now consider (5.11) for hump functions (unimodal
functions)

U(x) = (siny)" * V2o p(x) =0, (5.16)

where n = 0,1,2,..., and « is an arbitrary real constant.
Then lim,_ , , U(x) =0, and U(x) has precisely one
extremum (a maximum) located aty = y', 0 <y' <7, where

y' = arccot( — a/(2n + 1)). (5.17)
Let
k=a/(2n+ 1), (5.18)

Ulx,n) = [sin ye®/sinyte®’ |7 +12, n=0,1,2,...
(5.19)

For each n, the hump function U(x) = U(xy,n) has

amplitude 1 with its maximum located at y=y'
= arccot( — k).

If y' is fixed and n increases, from (5.19) it follows that
the hump sharpens. It sharpens to a spike as 7— . Three
profiles of U(x) are plotted in Figs. 6(a) and 6(b) forn =0
and n = 10, respectively, with v = 1.4.
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FIG. 6. (a) Hump function U(x;«,0); (b) Hump function U(x;x,10).
Three hump functions are plotted for n =0 [Fig. (a)] and n = 10 {Fig.
(b)]. Inboth cases the locations of the peaks areatx = — 15, 11.25,and 45
and the corresponding values of x are about — 2.25x10°% 3.73, and

1.62 X 107, respectively. The value of v is 1.4.

Let
A(k,n) = [sinyle”'] ¢+ 1D,

Corresponding to U(x;k,n),

(5.20)

B, =B, (x,n) = ‘MJ e~ Pgh®my sinn y dy,
T 0

which integrates to

B, =n![A(kn)/7)

% (" + 1)
(@ +n®)@* + (n —2)%) - (® + 1?)
fn=2N—-1 N=1.2,., (5.21)
with
b=>b(x,n) =4[(2n + )x — 1/v], (5.22)
and
a = a{k,mn) = b(x,n) — 2mi. (5.23)
One can show that
' .
B, (k.2N) = 2N A(k,2N) (@ — 1) b2+ 2m12
T b*+4m
Xﬁ b2+ 4k? — 4m> + 4bmi
iy (b2 + 4k 2 — 4m?)? + 16b°m?’
B, (k2N —1) (5.24)
— 1) -
_ (2N — 1)1 4(x,2N — 1) (e 4 1)

s
N b%2+ (2k — 1)2 — 4m* + 4bmi
XH 2 2 2\2 2.2 °?
k=1 (B + (2k— 1)* — 4m“)* + 16b°m
N=1.2,...
Ifn=0,

Bm (x,0) = (2/m)A(x,0) [e(l/z)(K—l/‘V)ﬂ’_ 1]

(k —1/v) + 4mi

. 5.25
(x — 1/v)% + 16m? ( )
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APPENDIX
1. Computation of {f,,,,(0;5)+9.,,(0;5)}
From (4.16), it follows that

B, =n![A(x,n)/ar] Fo 1 (056) in+1) R ) £ (0:)
x (" —1) [8n+1(0;§) =( —R  —i(n+))/ 8. (0]’
(@ +n*) @ + (n—2)7) -+ (@ + 2%) n=0,1,2,... (A1)
if n=2N, N=1,2,.., Hence
)
Soi 1 (06) + 8,41 (0:6) =( 0 i(n+;_)—R) fn(0;§)+g,.(0;§)] (42)
Joi1(08) — 8,1 (G;8) i(n+1)+R 0 £(06) — g, (0 )’
n=0,1,2,....
It follows that
Sos2(00) +8,,2(0:4) (n+3)(n+3)+R>—iR 0 S (0:0) +8,(0:6)
Sui200:8) — g, ,2(0:) - _( 0 (”+%)("+5)+R2+iR) 505 — g, (0:5) 1’
n=0,12,... (A3)
G. Bluman and S. Kumei 93
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Let
4R

Thus [cf. (4.18)]
(| form (0:6) 12 + |82m (0;5) |2)1/2 =515""S,, /47,

¢, = arctan 5> (A4)
(4m —1)(4m — 3) + 4R m=12,... (A9)
S =([(4m — 1)(4m — 3) + 4R2]2+ 16R?)"?,  (AS)
and
0,=a+a,+ " +a,, m=-12... (A6) 2. Computation of {,(z;t), 9,(z6)}
Then Consider (4.16). The matrix
mjqm Fio . _ 1 a(nz) R
=[(—=1)"/4"] (5,5, "5, )e” ""[cos & Fsing ], M(nJ’R)=—_—"R_' R m (A10)
T 2RI\ —
m=1,2,.... (A7) (n+ %) +
Note that is a unitary matrix.
Le
Som (08) = [( = D)™/4™] (5,8, " 5,) t
X [cos O, cos{ +isin®,, sinf ], (A8) B, =arctan[2R/(2n + 1)], n=01.2,., (All)
8om (0:8) = [ (= D™+ 1/47] (5,8, +5,,) and
X [cos©,, sin{ +isinO,, cos{ |, f=Ref+iImf.
m=12,... Then
J
Ref, 11 () Re f, (z;0)
Imf, ., (z6) Im f, (z,0)
= — I+ RINGB,, , A12
Reg, . 1(z:6) (r+ D7+ 8 Reg, (z;0) (AlD)
Img, ., (z6) Img, (z;5)
where ¢ = arccot z, and the 4 X 4 orthogonal matrix
cosfB,cosd  cosf, sing —sin g, 0
—cosfB, sing cosfB, cosd 0 —sin 83,
NB.$)= sin 8, 0 cosfB,cos¢ —cospB,sing |’ n=012.., (Al3)
0 sin 3, cosf3,sing  cosfB, cosd
and
Re fo(z:£) cos[Rlog(z+VZ+ 1) +¢1]
Imfo(z5) | _ 1 0 (AL4)
Re go(z;6) JZF+1 | —sin[Rlog(z+VZ+1) +¢]
Im go(z;$) 0
-
3. Asymptotic properties of {f,(¢), 9,(:€)} can show that as z— + o [cf. (4.28)],
Asz— + o, from (4.16), i (@6) = (. /) [cos[Rlogz +p," ] ]
a1 (Z56) X[1+0(1/2)],
S TR et minl iz g 1]
&n+1(26) 8. () (u," /2)sin[ [R 1ogz + p," ] ]
(cos B, —sin /9,,) [f,, (z£) x[14+0(1/2)},
sinf, cosB, /lg.(zH]’ where
n=012,.. (A15) pi==D"(n—-P>*+R*1[(n—P>+R?]

From (A15) and an analysis of the error in (A15), one
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XX [(1)? +R?))3, (A17)
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n—1

pt =Rlog2+¢5— Y Bi, n=12,.;
k=0

{B.} defined by (A11).

(A18)

4, Discussion of the algorithm to compute (5.8)

For n =2m, consider the matrix defined by (4.17),
namely

A(2mz,R B(2m,z,R
Pz,.(z,R)=( Cmzk)  Blmz )). (A19)
- B(2mz,R) A(2m.zR)
Then
.fzm (z;§2m ) ] ﬁ)(z;§2m ) ]
=P R . A20
[me (z:62m) 2m (2R) £o(z:65m) ¢ )

Note that the matrix P,,, (z,R) is independent of £,,,, . From
(4.7) and (4.8),

[fo(Z;§zm ) ] _

cos R¥(z) sin R\ll(z))
80(2;82m )

—sin RW(z) cos RY¥(z)

[ c0o8 &5 ]
X _Sin§2m .

Now multiply both sides of (A20) by 4,, and setz = 0. Then

(A21)

f‘Zm(o;;Zm)] [ §2m ]
m =A,P,, (0O,R s A22
82m (0:82,) am ( ) in £, ( )
where (A7) gives
_ (—1)"s85 S, (1 l)
P2m (O)R) - 2.4"‘ 1 _ 1
0 o)l )
Thus from (A22)
cos;Zm ] f‘2m(0;§2m)]
A, . =[P,,(0,R)] "4,
il B ESCETRH iy
(A24)
with
(=14 (1 1)
[PZm(O;R)] —_-25'12 ”m 1 _1
& 0 )(1 1)
X(O e\ 1) (A25)
J
SISZ"'Sm FZm(Z)
P. R) = . 1
&R = BT IC (sz(z)

m

From the initial condition (5.10),

Som (0;§z,,.)] (-Dm (1 1) [Bm]
_ 7 . A26
m [g2m(0;52m> > U —1/lc, ] A%

Hence in the superposition (5.8),

f‘zm (z’§2m ]
gzm (Z §2m
B 2s1s2 : Sm\/m
cos R¥(z)  sin R‘I’(Z))
X Py, (z,R)( —sin R¥(z) cos R¥Y(z)

1 1 e'e 0 ) [Bm]
x(l _ 1)( A o & (A27)
Note that explicit computations of {4,,,{,,,} are not re-
quired. Thus the problem of determining {4,,/;, (Z;{2.)>
A,.8,m (z:6,,)} has been reduced to the computation of
P,,. (z,R).

Algebraically, P,,, (z,R) is determined by using the re-
cursive relation (4.16) or its real version (A12)-(A14).
Next we give a nonrecursive procedure for finding P,,, (z,R)
based on a numerical solution of an initial value problem for

a system of ordinary differential equations.

F,,.(2)
[flz[Gz (i) (A28)
2m

solve the system corresponding to (3.20) and (4.1) for
o= — 2mi, namely

2+ 1)ﬂ+(z—2mi)f—R\/?+1g=o,

(A29)
(z2+1) +(z+2mz)g+RJ?_f 0,
with initial condition
£(0) (—1)"' [ ]
£2(0) 1 -1 (A30)

for any nontrivial ch01ce of constants {b,,,c,,},m = 1,2,....
Then [Z’z’"((’,’) equals the right-hand side of (A27) with B,,

ms Cm = Cn- Here P, (z,R) is determined in terms of
{Fz,,. (2), G, (2)}

G,,, (2) )
F2m (Z)

X(Fm ?m)(e—ie'" 0 )( cos RY(z) sinR\I!(z))(l 1)
C, -8B, 0 e*®/\—sinR¥(z) cosR¥(z)/\1 —1/"

(A31)

Note that the matrix P,,, (z,R) is independent of the choice of {b,,,c,, }. If b,, = 1, c,, =0, then (A31) becomes

F, (z
P (2R) = =20 ¢ +1)( o (2)

G2m (Z)
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- sz(z) (e_ie"'
F, (2) ) Pt

cos(R¥(z) — 7/4) —e °"sin(R¥(z) — 17'/4))

sin(R¥(z) — 7/4) €™ cos(RY (z) — 7/4)
(A32)
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Any numerical procedure such as Runge—Kutta can be used
to find {F,,, (), G,,, (2)},m=1,2,....
The following asymptotic expression is useful for com-

puting {A4,,. o, (Z:lom )s Am&am (Z:62m )} for large z: using
(All), (A16)-(A18), (A24)—-(A26), one can show that as

Z— + oo,

f;m (z;§2m ) ]
" g2m (Z;§2m )

47t
=2 [1+0(3)] o
V4 V4 ZYISZ' ‘ ‘Sm
—e ®msinw, (z))

€ cos ®,,(2)
X -
—e T"cosw,,(2)

i, N
—e "sinw,,(z)

]
X c. |’

(A33)
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where

2m—1
o, (z) =R 10g22——}— Y B (A34)
k=0

and {©,,,s,, } are given by (A4)—(A6).
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3M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Do-
ver, New York, 1965), Chap. 15.
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Splitting methods and invariant imbedding for time-independent wave
propagation in focusing media and wave guides

J.W. Evans

Ames Laboratory, Applied Mathematical Sciences, Iowa State University, Ames, Iowa 50011
(Received 30 July 1986; accepted for publication 16 September 1987)

For time-independent wave propagation in focusing media or wave guides, backscattering and
coupling between propagation modes are caused by deterministic or random variations of the
refractive index in the distinguished (x) direction of propagation. Various splittings of the
wave field into forward and backward traveling components, which lead to coupled equations
involving abstract operator coefficients, are presented. Choosing a natural explicit
representation for these operators immediately yields a coupled mode form of these equations.
The splitting procedure also leads naturally to abstract transmission and reflection operators
for slabs of finite thickness (a<x<b), and abstract invariant imbedding equations satisfied by
these. The coupled mode form of these equations, together with such features as reciprocity
(associated with an underlying symplectic structure) are also discussed. The example of a
square law medium is used to illustrate some of these concepts.

I. INTRODUCTION

Here we consider only time-independent scalar wave
propagation described by the d>2 dimensional Helmholtz
equation. We assume that there is a distinguished direction
of propagation chosen as the x direction in a Cartesian coor-
dinate system (x,,X,,X5,...) where x; =X, (X3,X3,...) =X,.
The Helmholtz equation is thus written naturally as

persvooact8)-Cy ). oo

where S = A, + k?(x), and suitable boundary conditions
are imposed on ¥ if the range of x, is restricted. Here
A, =3%/dx,? is the transverse Laplacian, k(x) = kn(x),
where n(x) is the refractive index, and k£ > O is arbitrary. We
shall regard {S=S(x)} (implicitly including any appropri-
ate boundary conditions) as a generally noncommutative
family of unbounded self-adjoint operators on L *(x, ).

Our treatment of the Helmholtz equation (1.1) is based
on a splitting of ¢ into right (x increasing) ¢, and left (x
decreasing) ¢, traveling components. This decomposition
is achieved in terms of a splitting operator P as

¢,+)_~ (¢) o ~1(1 -:'T‘”z)
(,/," = P ’. ,With/P——P(x)—-——2 1 +iT-"2)’
(1.2)

ie, ¢t =J(WFiT~"*y,), so ¢y=¢~ +¢*. Suitable
choices of the operators 7= T(x), on L ?(x, ) are discussed
below (cf. Refs. 1-6). Formal manipulation of (1.1) now
yields (cf. Ref. 4)

%c—(zi) = A(x)(zi),
d

A(x) =P(0 I)P"‘ + (——P)P“ ,
-3 dx (1.3a)

or
i;{,i = i—l—iT"”z[(S+ Dy* +(§—NyT]
dx 2
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+ (T, TI(g= — %), (13b)
To motivate (1.2) and (1.3), we note that the choice
T=S diagonalizes

0 1) »
(s o

thus decoupling (1.3) and providing natural definitions for
¥* inregions where n(x) (or.S) isindependent of x. We call
this choice full Jocal splitting, noting that it provides, in some
sense, the most complete splitting. It is naturally used (and
illustrated in this contribution ) for media with deterministic
n(x) which varies with x. Clearly, as recognized previous-
ly,>* there is no unique natural choice in regions where 7 (x)
varies with x. We now mention some other useful splitting
choices. Reference splitting where T(x) =S, independent
of x, is also suitable for treating deterministic media where

variations in n(x) with respect to x are restricted to some
localized region. Here we naturally choose
So=lim,, ., S(x). We have recently implemented refer-
ence splitting to treat wave propagation in random media
where the (statistical) mean, (n(x)) of n(x), isindependent
of x, and we choose S,= (S ).” Of course (1.2) and (1.3) also
allow for the possibility of intermediate splittings where
TS, but T'still depends on x, e.g., T(x) = {S(x)) for ran-
dom media where (n(x)) also varies with x.

Neglecting + coupling in (1.3) produces a “unidirec-
tional propagation approximation” which will be of the
WKB (parabolic) type for local (reference) splitting. Such
an approximation constitutes the lead term in an iterative
Bremmer-type series expansion® of the exact solution of
(1.3). For either an exact or approximate treatment, it is
clearly necessary to develop an operational calculus for the
splitting operator T(x). This is trivial if one simply makes a
scalar choice for T'(x) [e.g., T(x) =k *(x,x, = 0) (or the
|x|— oo limit, should it exist) which produces an Arnaud’
(Leontovich-Fock®) approximation], but instead we con-
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sider only “more complete’ abstract operator choices in an
attempt to avoid “kinematic” contributions to backscatter-
ing [i.e., those not associated with variations of k(x) with
respect to x]. The spectral theory for 7'(x) is only trivial for
stratified media where T is multiplicative in the transverse
Fourier transform variables. More generally, Weyl pseudo-
differential operator calculus can be used,’ but here we uti-
lize conventional self-adjoint operator spectral theory,
which, for focusing media or wave guides, corresponds to a
wave field decomposition into a complete set of guided and
radiation modes.

Mode-coupled equations, obtained by evaluating the ab-
stract operator splitting equations (1.3) in a natural explicit
representation, are displayed in Sec. II. A “more conven-
tional” derivation of these equations is also provided. The
explicit example of a square law medium with one lateral
dimension is treated in Sec. III, and a diagrammatic repre-
sentation of the Bremmer-type series solutions is provided.
Invariant imbedding equations for transmission and reflec-
tion operators for slabs of finite thickness are presented in
Sec. IV, and the symplectic structure of the underlying split-
ting equations is shown to generate important reciprocity
conditions.

Il. LOCAL SPLITTING APPLIED TO DETERMINISTIC
FOCUSING MEDIA AND WAVEGUIDES

The infinite focusing media (or open waveguides) con-
sidered here have the following properties: (i) n(x) attains
its maximum near x, = 0; (ii) n(x)—»n_ (x), as |x, |- o0,
for each x; and (iii) n(x) is independent of x outside of the
interval (0 <) @ <x < b. Thus any guided wave propagation
is along the x axis, and scattering is restricted to @ <x < b.
The self-adjoint operator T(x)=S(x) here in general has
several discrete eigenvalues satisfying Ae(k?n? (x),
k2 max n?(x)). The corresponding L ?(x, )-normalized ei-
genfunctions describe the guided modes.'®'! We note that if
d=23 and én(x)=n(x) —n_ (x)eC&(R?) is non-nega-
tive, then there exists at least one such guided mode,'? no
matter how small k! (This is also a property of symmetric,
but not asymmetric, slab waveguides'®.) In addition, each
A€[ — o0,k 2n% (x)] is in the continuous spectrum. Specifi-
cally, 4, =k?n% (x) — |k, |*is associated with “weak” ra-
diation mode eigenfunctions ~e™™ as |x,|—> . Modes
with A > 0 ( <0) are described as propagating (evanescent)
for reasons which will become obvious. A schematic of the
spectrum of T = S is shown in Fig. 1. Radiation modes can
plan an important role in wave propagation, but one en-
counters fundamental problems associated with singulari-
ties in associated coupling terms'! (see below). A guided
mode can also disappear into the continuum of radiation
modes as x varies, as a result of changes in the shape of n(x).
Such a cutoff highlights a fundamental problem with an
“adiabatic” treatment neglecting mode coupling.!! This
problem will not be addressed here.

For a closed waveguide, x, is restricted to a finite region
for each x. Its boundary (where conditions are imposed on
the wavefield) is assumed to vary smoothly with x for
a<x<b, and to be fixed elsewhere. Here the spectrum of
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FIG. 1. A schematic of the continuum spectrum (cross-hatched line) and
point spectrum (circles) of T=S.

T=Sis purely discrete, each eigenvalue A corresponding to
one or more guided modes. A mode which is propagating
(A >0), for large x, could become evanescent for part of
a < x < b (the quantum mechanical analog of which is ‘bar-
rier tunneling”'?). In this case one sees singularities in the
splitting procedure (certainA ~!/2— o ) generating a strong
coupling between forward and back propagating modes (cf.
the connection formulas for barrier tunneling’®). We shall
not discuss this further here.

It is convenient to introduce generic mode labels « and
to denote all (7'=S)-mode eigenfunctions by ¥, (x,|x)
=(x, |k,x) (using Dirac notation), and corresponding
eigenvalues by A, (x). Thus if 3, represents a sum/integral
over all modes, then one has that

FITx) =3 flh (0))Kkx) {xx] -
The modal coeﬁ”:cients &, (x) = {x,x|@} of (x) satisfy
p(x)= ¢, (x)(x,|K,x) .
We note her; that

We = (|| 9) =L txly — (2 )

2.1)

4 ’_d_ : )
- dX¢K+;<K’x dx KX ¢x’ ’
(2.2)
so, from (1.2), one has
1 d
T — -1 e )
)
, dl,
FoaSler e @9

We can obtain directly from (1.3), with T(x) =S(x), cou-
pled equations for ¢,%, which after some rearrangement be-
come

:_xzp;t (x) + {?i/h (x)'? +71fd%ln/1‘ (x)]t,//xi (%)
= —‘i——dd:ln A (YT (x)
1 d A (J'f))"2 ]
= L Y —1|¢F
e R [Grey B e
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/%“((x) 1/2
_ 1|y
[(/ux)) + ]'“ (X)}

=F * (x), say. (24)

Note that contributions to (T(x) ~*/?), come from the x de-
pendence of both eigenvalues and eigenfunctions (here bras
and kets). For evanescent 1, <0, we set 41?2 =i, |"/?
guaranteeing that the corresponding components of ¥+
(¢~) are exponentially decreasing as x increases (de-
creases). The singular behavior of the coupling coefficients,
{x,x|d /dx|x’x), where k, k' are both radiation modes, is
discussed in Appendix A ford = 3.

Clearly (2.4) provides a natural starting point for the
analysis of backscattering effects on wave propagation. For
boundary conditions corresponding to one or more right-
propagating guided modes at x =0 [#,} (0) #0, for such
«1, and no left-propagating wavesatx = oo [¢; () = 0],
(2.4) can be rewritten in integral form as

U (x) = ¢ (x) +J dx' G+ (R )FF (X)),
(s

(2.5
Yo (x) = —-f dx' G (x|x")F . (x),
where
¢} (x)=G [ (x|0)y (0)
and
4 174 X
G* (x|x’)§(l"(x)) exp(iif dx”/l,'(’z(x”)).
Ax(x) x'

The only contribution to the integrals, associated with in-
homogeneity in #(x) with respect to x, comes from the scat-
tering region x'€[a,b]. If coupling between guided modes is
weak and coupling to radiation modes can be ignored, then
the iterative solution of (2.5) is viable.

It is instructive to consider the relationship of (2.4) to
the more conventional mode-coupled equations for #,,
(#,) .. We show, in Appendix B, how the latter can be used
to generate a standard second-order equation for the ¢, [as
could have been obtained from an explicit propagation mode
representation of (1.1) ]. By introducing an appropriate infi-
nite matrix splitting operator, we can also recover (2.4).

IIl. WAVE PROPAGATION IN SQUARE LAW MEDIA
{WITH VARIABLE FOCUSING)

When the guided mode wave propagation in focusing
media is effectively confined laterally to a region near the
maximum of 7(x), one might expect a quadratic approxima-
tion for n({x) to be reasonable. This motivates the analysis of
“square-law”’ media where

n(x)?=1-B%*x)|x,|?, (3.1)

which, of course, is unphysical for |x,|>B ~!. Relation
(3.1) provides a useful description for certain optical fibers.
Although replacing the physical n(x) by (3.1) may have
minimal effect on the highest (guided mode) eigenvalues
and eigenfunctions of T(x)=S(x) and the corresponding
eigenfunctions, it affects those of lower eigenvalues more
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dramatically, and replaces the continuous radiation mode
spectrum with a “spurious” point spectrum.

For simplicity we confine our attention tod = 2 here (a
single lateral dimension). Here the eigenfunctions and
eigenvalues of

a 2

T(x)=S(x) = + k(1 — B%*(x)x,?)
ax

2
1

are given by
Y (x, %) = (2 "/m!)*(kB(x)/m)"/*

XHm{k 1izB(x)1{2xl)e—kB(x)x§/2 ,
Am(x) =k? —2kB(x)(m +1}), for m>0,

where H,, is the mth-order Hermite polynomial. Using stan-
dard relationships for the H,,, one can show that

3.2)

L B, 1y 2m s
™ |m,x) B0 [m'2(m — 1)%|m — 2,x)
—(m+2)"2(m+ 1)!?m +2%)],

(3.3a)
S0

d B'(x) 1/2 172
——inx) = +2 +1
<m,xl o ]n x) 4B(x) [(m Y4 (m Y98, s am

....ml/Z(m_” 1)1/25"'_2,"] . (33b)

It is elucidating to consider the high wavenumber (k)
regime here where d/dxInA,, and (4,,,,/4,,)"*—1
= O0(1/k), which indicates the small coupling between for-
ward and backward propagating modes. In this regime (2.4)
becomes

Lot leos(o D

_B'X
4B(x)

— (m A2V (m+ DVPE L] + 0(712) . (34

[mlfl(m _ 1)1/2¢;|T-_2

Let us now utilize the integral form (2.5) of the mode
coupled equations (2.4) for a scattering problem with
boundary conditions ¥, (0) x8,,0, ¥, (o) =0 for all
m>0. Clearly, from (3.3) and (2.4), one has that
¥ E (x) =0, for m odd. Expressions for %, with m even, can
be obtained from the iterative solution of (2.5) [assuming
that no A,, (x) changes sign or becomes zero, as x varies]. It
is natural to represent contributions to these solutions dia-
grammatically in terms of paths on a lattice of points labeled
by the modes (m, + ). The zero length path (0, 4 ) and
segments connecting different points have the interpretation
shown in Fig. 2. Then ¢} is represented as a sum over all
paths connecting (0, + ) to (mm, + ) (see Fig. 3). One can
straightforwardly extend these considerations to higher di-
mensional (d>3) square law media.

IV. INVARIANT IMBEDDING, SYMPLECTIC
STRUCTURE AND RECIPROCITY, AND OTHER
SYMMETRIES

We have shown that the basic differential equation asso-
ciated with any splitting has the form
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(0,y+)

o = OO N4 expls j;dx' x40

(m,+) (m:2,0)
ey s S22 me1y /2 rdx'G;(xlx')

[[“ 00!

.o Imdy J:dx’G;(xlx’)B’(x')/)h(x').

(m,+) (m,-)
—>—s

(m,-) (me2,-0) ((m,-) (m,+) (0,+) (m:2,0) ((m,+) (m,-)
[ — [ —>—e are obtained from o—p—e [ o—>——e

-
by replacing J;dx’ c; . vithL dx’ G; .

FIG. 2. Operator theoretic interpretation of path segments appearing in the
diagrammatic representation of solutions of the coupled wave equations.
Hereo= +1or — 1.

%(ﬁf) - A(x)(:f;)EiH(x)(zt)’

0 I
wherej=(_l 0),

defining H(x)= — jA(x) and noting that —j>=1 (the
identity). Since (4.1) is linear, one naturally defines the ab-
stract transmission T * and reflection R * operators for
slabs [x,y] of finite thickness, by

4.1)

(o) =i m-colomn)
=S(x,y ($+E ))) (4.2)

where S is called the scattering operator and clearly
T *(x,x) =1, R * (x,x) = 0. The operator S satisfies the
differential equation (cf. Refs. 4, 5, and 14)

(- ol )

Taking the four components of (4.3) provides the familiar
Ambarzumian form of the invariant imbedding equations.'*
An equivalent set may be obtained from these by making the

(4.3)

replacements d/dy-3d/dx, T oT*, R RT,
H;t + (}’)-*H:,:¢ (X),Hi F (}’)—*Hq: + (X)
0+ 2+ 4+ 0+ 2+ 0+ 2+
0+
W= o BT + N+4T
0- 2- 0- 2- 0- 2-
0+ 2+ 0+ 2+ 0+ 2+ O+ 2+
N R 7 R
0- 2- 0- 2- 0-2-  O-2-
0+ 2+ 0+ 2+ 0+ 2+
6 o= (L B o+
0- 2- 0- 2- 0- 2-
0+ 2+ 4+ 2m+
+ _ o -
Yam = m:_ _______ _ﬁ
0- 2- 2m-
0+ 2+ 4+ 2m+
+ T+
0- 2- 7 2m-

FIG. 3. Diagrammatic expansions for various forward and backward trav-
eling modal components of the wave field.
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Since these equations have a structure generic to many
problems in wave propagation and transport theory, we anti-

~ cipate that there exist basic relationships between the reflec-

tion and transmission operators. To fully elucidate this
structure, it is appropriate to introduce several new quanti-
ties. Let C(x,y) be the operator which propagates the wave-
fields ¢ * from x to y, i.e.,

z/f*(y)) (¢+(x))

=C s, s .
(w‘(y) Ny (4.4)
where, from (4.2),

C,,=T*—R7[T7]7R*+, C,_=R"[T"]7,

C_.=—[T"1"'RH, =[T~]!. (4.5)

Though C is less physical than S, we shall see that in certain
cases it can be regarded as a (linear) canonical transforma-
tion. Note that from (4.1) and (4.4), one clearly has

Cx,x + Ax) =+ A(x)Ax + O(Ax?) , (4.6)
where | is the identity. Finally, it is convenient to define

0 0(x) (x) 0
0 =(" 5, 00 ) (6 30):
@ ={_bwx) 0 =" 50

(4.7)

where the operator 8(x) will be spemﬁed later and ~ denotes
a real involution operation (so A= A, i=1). Now using
(4.1)-(4.7) as defining relations, one has the following.

Theorem: The following conditions are equivalent for
any differentiable 8(x):

(1) 0(x)S(xy) = S(x)8(x,p) , (4.8)
ie.,
O(x)R *(x,y) =R
8()R ~(xy)
and
8T~ (xp) =T+ (x)6(y) ;
(i) C(x,)0' (M C(xp) =0'(x),
i.e., a symplectic condition for C;
(iii) A(x)0'(x) + 0'(x)A(x) + 0L (x) =0,

or equivalently,

*(x)8(x),
=R~ (x)0(»)

(4.9)

(4.10)

Hx)80x,x) — 0(xx)H(x) + 0L (x) =
i.e.,
H,  (x)8(x)=6(x)H, ,(x),
H__(x)8(x) =0(x)H__(x),
and
H_,(x)8(x) —6(x)H, _(x) +6,(x) =

_ Proof: (i) = (ii): Calculation of the components of
C(x,)0'(»)C(x,p), followed by substitution of identities
from (i), shows straightforwardly that this quantity equals
0!(x).
(ii) => (iii): Substituting the expansions
Cix,x + Ax) = | + AAx + O(AX?) ,
C(x,x + Ax) 7' =1— AAx + O(AX?),

and

(4.11)
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0'(x + Ax) = 0'(x) + 0} (x)Ax + O(Ax?) ,
into the identity

C(x,x + Ax)0'(x 4 Ax) = 0'(x)C(x,x + Ax) !,
(4.12)
and equating terms O(Ax) yields (iii).
(iii) = (i): Using Eqgs. (4.3) and identities from (iii),
one obtains

i[6’(x)R *1=0x)T"H,, (p)T™*

dy
=T 0H,., T+
+[6() T~ =TOM1H, .(T™,
and
%lﬁ o)1 =T+H, ,(»T8(x)

=T*H, 0T+ +T+H, . (»)

X[T~6(x)—6()T™*1, (4.13)
SO
i[o(x)R + _R*0(x)]
dy
=0T~ =T *6OWMIH,. . (NT* -1, (414)

where I denotes the involution of the first term. Similarly,
ad .z = _
—[6)R~ =R ~6(»)]
@ -~ —~—
=[6()R™ —R76(»)]

X[H++(y)§+H++(y)]—I’ (4.15)
91T+ — T-8(x)]
dy
=[8)R~—R-0MIH, ,(NT*
—[R-H, )+ H, (]
X[T~8(x) —0()T™]. (4.16)

Since the identities (i) [i.e., (4.8)] are trivially satisfied
when x =y, (4.14)-(4.16) show that they are satisfied for
all y>x. a

Now we apply these results to the specific choice of split-
ting of ¢ into ¢ * defined by (1.2) and thus associated with
the operator T = T(x). The corresponding components of H
can be determined from (1.3). For this application it is nec-
essary to choose the real involution ~ to correspond to the
real transpose (rather than Hermitian adjoint) and to note
that appropriate choices of T satisfy 7 = T, i.e.,

f dx, ¢(xl)(7"¢><xl)sf dx, $(x,)(T¥)(x,)

=fdxl $(x,) (TP (x,) .

4.17)
This is obviously true choosing, e.g., I =S(x)
=A, +k?*x) (local splitting) or T=S,=A,
+k?*(x= + o,x;) (reference splitting) even if

k(x) = kn(x) is complex valued corresponding to a dissipa-
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tive medium. Then condition (iii) is satisfied by the choice
0=T'2, (4.18)
as may be verified by straightforward calculation.
Another symmetry property for the operator C(x,y) is

based on the observation that the (easily verified) relation-
ship

0 N~ 01
(1 o)A(")zA(x)(I o)’

A, ,=A__, A_,=4,_, (4.19)
is equivalent to

(7 oows=con(; g)

C, . (xy)=C__(xy), C_,.(xp)= E‘+_(x,y) .
(4.20)
This is representative of a broader class of symmetry rela-

tionships.'* When (4.20) is combined with (4.9) and
(4.18), one also obtains

or

or

~ TV? 0 —
C(x,y)(o ) T ,2@))0(”)
_ T1/2(x) 0 )
= (0 rings) (4.21)

Matrix elements of scattering operators are evaluated
here using a natural mixed representation with respect to
eigenfunctions of (different positioned) splitting operators
T(x). For example, T}, (x,y) = {«'p|T * (x,y)|x.x) is the
appropriate transmission coefficient connecting right propa-
gating modes « at x, and «’ at y. Generic Dirac notation is
used here for T eigenbras and eigenkets, and corresponding
eigenvalues are denoted by 4, (x) (but now these will not
correspond to S eigenbras and eigenkets and eigenvalues
when S # 7). This prescription is automatically compatible
with the evaluation of operator products required in (4.3)
(or equivalent versions of these equations). Clearly, in
(4.3), T'bras and kets for all components of H(y) are evalu-
ated at y. The important reciprocity conditions (4.8) [using
(4.18)] have the explicit form

A ()2, x|R * (x,9) K %)

=4 (X)HE x|R T (xp)|Kx) ,
AR PIR ~ () |K )

=Ae 'E IR T (xp)[Rp),
A () 2 kex| T~ (x,9) |6 )

=2, O)VAE YT+ () |[Kx)
where (x, |[£,x) = ¥, (x,)*

It is a straightforward matter to write down the explicit
form of the mode coupled invariant imbedding equations.

One could investigate an iterative form of solution which, to
the lowest order, gives

i4
T ~0c, epr ds{ec,s|H - |K,S)) andR %, ~0.
i (4.23)

(4.22)
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V. CONCLUSIONS

An abstract splitting operator based formation is shown
to provide a powerful and flexible formulation of wave prop-
agation in “imperfect” media. Mode coupled equations con-
necting forward and backward propagation provide a natu-
ral basis for the analysis of backscattering effects. We have,
however, noted some difficulties associated with guided
mode cutoff, and propagating-evanescent transitions. The
formalism also provides a natural basis for derivation of in-
variant imbedding equations for transmission and reflection
operators. The reciprocity relations derived here for these
are important from a fundamental and practical perspective.
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APPENDIX A: RADIATION MODE EIGENFUNCTIONS

AND MATRIX ELEMENTS FOR d=3
Here the eigenvalue equation for the radiation mode ei-
genfunctions, ¢, ~ (1/27) ™, as |x, |- w0, can be con-

verted to the integral form
1 ik, X lk 2 f
=—e 4 — | dx]
P (x,[x) Py e+ 2 1

XH g (ky [x, —x][)0n(x,x] )t (x{[x),

(A1)
where k, = |k, |, and we have used the Hankel function H ;
to provide an explicit representation of the two-dimensional
free Green’s function (A, + k2) ' (see Ref. 16a). Let us
analyze radiation to radiation mode coupling coefficients,
(k,,x|d /dx|k],x), of (2.4). First, one must consider
d/dx ¢k1, which can be obtained from (A1) by differentiat-
ing under the integral sign. Thus its large x, = |x, | asymp-
totic behavior is obtained directly from that of

H(k{x,)~(mk{x,/2) """ * exp(ik | x, — im/4) .

Second, it is convenient to reexpress the plane wave part of
¥, as a linear combination of cylindrical wave eigenfunc-
tions of A, , proportional to

ak, x, \~ 17 1 1
J,,(klxl)~( ; l) cos(kal —m—-—-zﬂ-—),

as x; — 0.'® After writing

fdxl =fd¢fdxl X,

it is clear that these coupling coefficients involve singular
integrals of the form
f dk % = — 8(k) + Pk, (A2)
0

where P represents a Cauchy principal value integral.
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APPENDIX B: SPLITTING OF CONVENTIONAL MODE-
COUPLED EQUATIONS

Let W, W, denote infinite dimensional vectors with com-
ponents ¥,, (¥, ),, respectively. Then, from (1.1), one can
readily obtain the following infinite matrix form of the con-
ventional mode-coupled equations*!:

o) (2H=5))

where (1), . =8, . is the identity, (1), = 6,4, (where
the A, are the eigenvalues of T'=S), and (D),
= (x,x|d /dx|«’x). Elimination of ¥, from (B1) yields the
standard second-order equation for W'!:
ﬁw+zoiw+(o2+-‘-’—o+x)w-a (B2)
dx? dx dx o
Instead we introduce right, W™, and left, ¥, traveling vec-
tors in terms of a splitting operator P by

+ 07} 11—
(w-)”P(W,)’ Wherep:?(l "y i[l/i')’ (B3)

so the components of ¥* are just ¥F (for local splitting
where T=S). Deriving equations for ¥ * from (B1) in the
obvious way [cf. (1.3)] yields

Loy = pavrgs ¢ Lo guzags g,
dx - 2 ¥ ’

(B1)

. é/{—l/ZDAl/z(q,t . \P;) (B4)

—iD(¥r+¥7),
recovering (2.4).
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The Zitterbewegung of a Dirac particle in two-dimensional space-time
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The path space measures that have been constructed in the present authors’ previous papers to
give path integral formulas in quantum mechanics for a Dirac particle in two-dimensional
space-time are shown to be concentrated on those paths that have differential coefficients equal
to plus or minus the light velocity in every finite time interval except at finitely many instants

of time.

I. INTRODUCTION

In previous papers,' we presented a mathematically
rigorous treatment of the Feynman path integral in relativis-
tic quantum mechanics in two space-time dimensions. We
constructed countably additive path space measures to give
path integral formulas that represent the fundamental solu-
tion of the Cauchy problem for the Dirac equation as well as
the retarded and the advanced propagators for a Dirac parti-
cle, both in the presence of an electromagnetic field. It was
shown that the path space measures obtained have support
on the sets of those Lipschitz continuous paths whose differ-
ential coefficients are of magnitude smaller than or equal to
the light velocity at almost every instant of time (on the sets
of the straight lines with slopes equal to plus or minus the
light velocity, when the mass of the particle is zero).

In Ref. 4, we have improved the above result on their
support property to show that almost every path has a differ-
ential coefficient that is, in magnitude, constant and exactly
equal to the light velocity with the possible exception of a
closed subset of time of Lebesgue measure zero.

The aim of the present paper is to give the ultimate result
on the support property of these path space measures, that is,
that they are concentrated on the sets of those Lipschitz con-
tinuous paths which have differential coefficients of magni-
tude equal to the light velocity in every finite time interval
except at most finitely many instants of time. So the trajec-
tory of the particle shuttles back and forth in one-dimension-
al space with slopes of the light velocity; it is a zigzag path of
a finite number of straight segments in each finite time inter-
val. At the end points of the segments, the particle changes
its direction of motion. This property is related to the cryptic
description of Feynman-Hibbs®> (see also Riazanov® and
Rosen’), and may be considered as a measure-theoretic in-
terpretation of the notion of Zitterbewegung® of a Dirac par-
ticle in two-dimensional space-time.

The recent work by Blanchard et a/.” has dealt with path
integral formulas for the Diract equation based on the Pois-
son process. '>!! In their approach, the support property cor-
responding to the result of the present paper is a direct conse-
quence of the properties of the Poisson process. Our result is,
however, a direct and analytic derivation from the path
space measures constructed, not passing through the Pois-
SOn process.

In Sec. I1, we first give a brief review of the result in our
previous papers,>* and then state the result of this paper on
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the support property of the path space measures construct-
ed. Section I1I is devoted to its proof.

Here C? is the vector space of complex two-column vec-
tors, (C2)’ that of complex two-row vectors, and M, (C) that
of complex 2 <2 matrices.

Il. RESULT

Consider two hyperbolic systems of the first order. One
is the Dirac equation

9,6(t.x) = — [ald, — ied(t,x)) + imB
+ ie®(2,x) 14 (1x), (2.1)

for a particle of mass m and charge e in an external electro-
magnetic field in two-dimensional space-time RXR = R?,
Here the real-valued functions ®(¢,x) and 4(¢,x) are the
scalar and vector potentials of the field, and @ and Bare 2 X 2
Hermitian matrices with > =82 =1 and a¢f + Ba =0.
The other system is

4, ¢¥(r,x) = —i(HY)(1,x)
= — [dy + ledy(x) + a{d, + ied (X))
+ imfB 1¢(7,x),
7eR, x = (x°x')eR?, 2.2)

where 9, =3/3x", p=0,1, and Ay(x) =P(x°x"),
A,(x) = —A(xX°x") with x = (x°x!) replacing (£,x).
Here 7 is a third variable, which may be regarded as a ficti-
tious time. Equation (2.2) was used to construct the path
space measure for path integral representations of the re-
tarded and advanced propagators of the Dirac particle.>> In
these equations the natural units are used in which the light
velocity ¢ and the reduced Planck’s constant #are equal to 1.

Then for the Cauchy problems for Egs. (2.1) and (2.2)
with data ¢(r,x) = g(x) and ¢(r,x) = g(x), we have estab-
lished® the following path integral formulas representing
their respective solutions ¢ (#,x) and ¥(¢,x) as well as funda-
mental solutions XK' (s,x;r,y) and K™ (s,x;7,y). By |r.s| we
denote the closed interval [7,s] when r<s, or [s,7] when
r>s.

Path integral representation: (1) There exists a unique
S(RXR;M,(C))-valued countably additive measure vy,
on the Banach space C(|r.s|;R) of the one-dimensional con-
tinuous paths X: |r,s| - R such that for every continuous
A(tx) and ®(z,x),

teR, xeR,
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FEK (sx;rp)g(v)dx dy

RXR

= f (fidvi, (X)g) eXp[ — if e®(2,X(2))dt

(8= [

+ iJs ed (t,X(t))dX(t)] , (2.3)

with ( f,g) in #(R;(C?)')X &~ (R;C?). The support of v, is
on the set of the Lipschitz continuous paths X: |r,s| - R satis-
fying for each a,b with r<a <b<s when r<s or r>a> b>s
when r> s,

|X(b) — X(a)|<|b—a|,
[|X(t) =X =|t—r|, in case m =0] .
(2.4)
(2) There exists a unique .%’'(R*X R%;M,(C))-valued
countably additive measure v.. on the Banach space
C(|r,s|;R?) of the two-dimensional continuous paths X:
|rs| »R?, X(r)=(X°(7),X'(7)), such that for every
continuous A(x) = (4,(x),4,(x}),

(f;e—i(s—r)Hg) — JJ mKll(s,x;r,y)g(y)dx dy
R*x R?

for te|rs|,

= [(ravi g

1 5
X exp[ —1i z J eAp(X(T))dX"(f)] ,
o (2.5)

with ( f,g) in (R%(C?)') X # (R%;C?). The support of vi~
is on the set of the Lipschitz continuous paths X: |7,s| - R?
satisfying for each a,b with r<a<b<s when r<s or
r>a>b>s whenr>s,

X°b)—X%a)=b—a, X' (b)—-X"(2)|<|b—4q|,
(X' —X'(r)|=|t—r]
(2.6)

for te|r,s|, incasem =0].

In Ref. 4 we have improved on the support property of
these path space measures v;, and v_, when the mass m is
not zero, and, in fact, proved that almost every path with
respect to them has a differential coefficient that is constant
and exactly equal to plus or minus the light velocity except
on a closed subset of time of Lebesgue measure zero.

In the present paper we want to prove the following
theorem, which gives the ultimate result on the support
property of the path space measures v, and v,.,.

Theorem: (1) When m > 0, the measure v;, is concen-
trated on the set of those Lipschitz continuous paths X:
|7,s| - R which satisfy

for some finite partition,

r=1545S""St, =sof |rs|, depending on X,

j—=1

X)) —X(r) = z (=D —t_y)
i=1
+ (= 1(@—¢t_,),
or 2.7)
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j=1 )

X -X(n= Y (=Dt —1_,)

i=1
+(—=1Y"Yt—¢_,),

forzelt; _ 4|, 1< j<k.

(2) When m > 0, the measure v, is concentrated on the
set of those Lipschitz continuous paths X: [7,s| - R? that sat-
isfy

X)) —X°(ry=t—r,

and, for some finite partition, r = £,S#,S - S¢t, =sof

|7.s|, depending on X,

for te|rs| ,

i—1
XU -X'="3 (=Dt —t,_,)
i=1
+ (= Dt—1_y),
or (2.8)

f—1

X' -X'="3 (=1 =1,y

i=1
+(=1Y"'t—4_),

forzelt;_ 4], 1<j<k.

Remark 1: The support properties of v., and v}, in the
Theorem tell us the nature of the Zitterbewegung® of the
Dirac particle. The motion described by a path satisfying
(2.7) or (2.8) is such that the velocity is, in magnitude,
equal to 1, the light velocity, in every finite time interval
except for finitely many instants of time where the velocity
alters its sign. Here the role the mass m plays is not to render
the magnitude of the velocity smaller than 1, but to change
the direction of motion of the particle time after time.

Remark 2: Feynman and Hibbs® give briefly a cryptic
description of the fundamental solution of the Cauchy prob-
lem for the free Dirac equation in two space-time dimensions
(see also Riazanov® and Rosen’).

Remark 3: Recently Blanchard ef al.° have derived a
corresponding support property from a basic property of
Poisson processes. See also Gaveau et al.,'° Gaveau,!! Jacob-
son,'? and De Angelis e al.'* Our proof is, however, a direct
and analytic derivation from the path space measures, not
passing through a Poisson process.

{Il. PROOF OF THEOREM

We shall only prove the first part of the Theorem here.
The second part will be shown similarly. Without loss of
generality, we may assume that » = 0 and s > 0. Before prov-
ing the support property of the measure v., as in the
Theorem, we sketch the way to construct vL,.

Consider the Cauchy problem for the free equation to
(2.1),

9,4(tx) = —ad, —imB |4(tx), teR, xeR,
(3.1

with initial data ¢(0,x) = g(x). Let K} (s,x) be the funda-
mental solution:

Bsix) = (e~ %+ Dg) (x) — f Kb (sx— g0y
R
(3.2)
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It is given by
Ki(sx) =279, —ad, —imB]
X (Jolm(s* = x*)'2)0(s — |x])),  (3.3)

where J, () is the Bessel function of order zero, and 8(¢) the
Heaviside function 8(¢) =1 for t>0, =0 for # <0. Here
C., (R;C?) denotes the Banach space of the C2-valued con-
tinuous functions in R that vanish at infinity. Using Eq.
(3.3), we get the following lemma.

Lemma I: Thee ™ "“%* "™ is a continuous linear oper-
ator of C_ (R;C?) into itself, and satisfies

| Ve ™=+ 2|, <e™*|| Nl (3.4)
for gin C_ (R;C?). Here N is a unitary matrix satisfying

(1 O )

NaN~" = ( 0o —1-

For each fixed s> 0 let £, =I5, R = (R)!* be
the product of the uncountably many copies of R, where
R = RU{ w0 } is the one-point compactification of R. By the
Tychonoff theorem'* £, is a compact Hausdorff space in
the product topology. It may be regarded as the space of all
paths X: [0,s] —» R, possibly discontinuous and possibly pass-
ing through infinity. Let C(£’,,) be the Banach space of
the complex-valued continuous functions on £, and
Can (£°5,) the subspace of those ¥ in C(#,, ) for which
there exists a finite partition:

O=so<8,<""" <8, =5, (3.5)

of the interval [0,s] and a complex_-valued bounded contin-
uous function F(xg,x,,...,x, ) on (R)"*! such that

Y(X) = F(X(50),X(51)5...,X(5,)) - (3.6)
Define, for each fixed s > 0, a functional L, (¥; £,g) lin-

ear in WeCgy, (#,,) and sesquilinear in (fg)
e (R;(C))X 7 (R;C?) by
Lo(Wife) = | dxore [ dx, 753
R R
X K(I)(Sn —Sn_ 1% —xn—l)
X K(I)(Sn—l —Sp_2:Xn_1 _xn—2)
X o X K (8 — Sonx; — Xg)
X F(xg,X1,...0%,,)8(X0) . (3.7)

Then we can show the following lemma by successively
using Lemma 1.

Lemma 2: (1) For each fixed (fg) in
F(R;(C?))X L (R;C?), L, (V;fg) is well defined on
Cn (Z,0); it is independent of the choice of F correspond-
ing to .

(2) The following inequality holds:

Lo (¥ fig) | <ce™ ||| || £l 1}igll.. » (3.8)

for every ¥ in C4, (#,0) and every pair (fg) in
F(R;(C?))X & (R;C?), with ¢ = |N | |N ~!|<2. Here the
norm of a 2 X2 matrix M = (M, ) is defined by

2

|M | = max Zl | M| -

1QK2 =
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TheL 'and L= normsaredenotedby ||+ ||, and ||-|| , , respec-
tively.

Since Cyg, (£, ) is dense in C(£°,) by the Stone—
Weierstrass theorem,'® the inequality (3.8) holds also for
WeC( %, ). Then in virtue of the Riesz-type representation
theorem,'’ there exists a unique %'(R X R;M,(C))-valued
Borel measure v, on £, such that

f (v, (DR = Lyo (¥ fig) -
& 50

We shall now see the measure v, has the support prop-
erty described in part (1) of the Theorem.

First we explain an outline of the following argument.
Rewrite the functional L, (¥; f,g) in (3.7) as

Lo (B£8) = (f(x,),N 7l =g — €

X F(xg,.-.s%, YNg(x0)) (3.7)

where C = — N[a d, + imB]N ~! with the unitary matrix
Nin Lemma 1, and for j = 1,2,...,n, the operator ¥~ ¥- ¢
maps the function of x; _ , into that of x;. Put

A= —NaN~'d, and B= —imNBN™?,
so that
¢C=Ne "@HtIMON -1 _ gla+B)

By iterating the formula
4
eC=e"+ J dr,e''~™4BenC, (3.9)
0
we make the Taylor expansion of €’ in m:
o o« L] k
=3y f dTl‘"f dr, G(t— D ‘ri)
k=0J0 0 i=1
k
X exp[(t -3 r,-)A ]B exp(r,A)B
i=1
X exp(7,_,4) "Bexp(r )= 3 S¥.
k=0
(3.10)

We substitute (3.10) into (3.7") to get

o0

Ls,O(W;f!g) = z 2
K=O0k + " Fhy=k
k>0

X X S8 F(Xgp.X, JNg (%))

(f(x,) .N80,

n—1

= E L (Y £8),
k=0
where for j = 1,2,...,n, the operator S:’_ 5, maps the func-
tion of x;_; to that of x;. Next we can show, for each func-
tional L ¥, (¥; £.g), a lemma analogous to Lemma 2, which
will yield a Borel measure v£, on £°,, with

f (fidvho (X)gI¥ (D) = L, (¥ fg)

50

so that

0

V:;o= Z"go-

k=0
Finally we show each v£, is concentrated on the zigzag paths
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of k straight segments and hence conclude v, possesses the
desired support property.
Now we carry out the procedure described above. Set

S0=e", S0 =eC=eMU+d (3.11a)
and
0 o k
Sk= f dTl"'f dr, G(t- D 1',.)
(V] 0 i=1
k
X exp[(t— D ri)A ]B exp(7,4)B
i=1
X exp(7r,_,A4)  -Bexp(r,4), (3.11b)

© © k
Sf”:f drl'“f dr, 0(1‘— ZT,-)
0 0 i=1
k
X exp[(t— 2 T,-)A ]B exp(7,A4)

i=1
X *-*X Bexp(r,A)B exp(,C),

for k>1.
Then we have the following lemma.
Lemma 3:

N
(1) §- = > Skys¥+1- N=0,1.2,...
¥=o

(2) S¥and S¥~, k =0,1,..., are bounded linear opera-
tors of C_, (R;C?) into itself:

ISYIS D~ m)y,  ||SE|< (k) " (me)ke™.

Proof: By iteration of (3.9), we get (1). The statement

(2) is a direct consequence of definition (3.11) and the esti-
mates

lelI<t, |IBll=m, [le]l<e™.

The estimate |[¢’||<e™ is nothing but (3.4). Since
NBN ~!anticommutes with NaN ~'and NaN ~'isdiagonal,
we have

(NBN =1}y = (NBN ~')p, =0,

[(NBN 1) 15| = [(NBN ~1)y| =1
and hence ||B || = m. Notice that e operates on

( "")ec°° (R;C?)
P2

according to

P @1(x—1)
“(p)e=(pro):
(= o
so that we get |le || = 1. !
For WeCg, (#°,, ) represented as (3.6) with a contin-

uous function F(xy,x,,...,X, ) on (R)"*!', we introduce a
sequence

(3.12)

of C2-valued functions on R with parameters. Set

FQ . (x) = Ng(x)F(x,xy,....%,) (3.13a)
and with S *and %~ in (3.11),
F;(I,),...,K,;x,+1 X (x)

= (S o FET R ) (XD (3.13b)

106 J. Math. Phys., Vol. 29, No. 1, January 1988

for/=1,2,.,n—1,and

FE k) =S5, FETR ).

,,,,, (3.13¢)
Here X, is k, or k; — with k; a non-negative integer. For

1I<i<n—1,
) 25 S )
in (3.13b) is in C_ (R;C?) as a function of y.
For each k>0, define the functionals L ¥, (¥; f,g) and

L5 (¥; f.g), which are linear in WeCy, (£, , ) and sesqui-
linear in ( £,g)e#(R;(C?)') X % (R;C?), by

(3.14a)
L% (¥;fg)= f FONFE o (x)dx,
R n
and
Ls(Bf= 3 f FRN-!
2P k= k, ky,.. k0 YR
X F L (x)dx, (3.14b)
Lig(¥fe)= Y D f fON!
p=1 3 k=k R
k31, Ky gk >0
X F™ (x)dx , (3.14¢c)
[ R I T

for k>1. Note that L 5 (¥; £,g) in (3.14a) is nothing but
L., (¥;fg) in (3.7).

Then the following lemma holds.

Lemma 4: (1) For each fixed (fg)eS(R;(C?))
X (R;C?) and each k>0, L%, (¥; fg) and L %5 (¥; f,g)
are well defined on Cy, (£, ); they are independent of the
choice of F corresponding to V.

(2) The following inequalities hold:

L &0 (%5 £8) |<e (kD) ! (ms)* 2]} || f1l, gl »
IL 55 (W; ) |<e (kD)™ (ms) e™ || || £1],llgll.. »
with a constant ¢<2.
k

(3) LyF (¥ £8) = Y Liy(¥fg)

I=0

+ LG (Y f8)
L% (¥;f8) = P> Ly (¥ f8).

=0

Proof: The statement (1) follows from the identities

i SI Sk—l=Sk
“~0 W T

T+ T2

and

T,72>0,

T+ 7 ?

k—1

1 gk—I- k-QO0— _ Qk—
S SLSkIm 4580 =58
I=0

which can be derived from the definition (3.11). To prove
(2), we first note that by induction and continuity of the
operator S ¥ in Lemma 3,

F(l)
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isin C_, (R;C?) and continuous as a map on the parameter
space R*~! into C_ (R;C?), for fixed / = 1,...,n. Recalling
the definitions (3.13b) and (3.13c), we obtain, by iterative
application of Lemma 3 (2),
”F(n) k“ao = Rsup l(Ss -5, F(n_I: lx)j(x)l
2 J

Kypeens

F(n—l)

1 Ky lx||°°

<supl|S3_,
xR

<(m(s, —s,_ 1)) "(k,H ™!

X SUp|lF i ") all <

nlx

<(m(sy —s0))o (m(s, — $u_ 1))

X (k) "l (kD!

This estimate together w1th deﬁmtlons (3.14b) and (3.13a)
yields the first inequality in (2). We get similarly the second
onein (2). The first equality in (3) is a direct consequence of
Lemma 3 (1). Note that |[L¥;" '~ (¥; £,g)| -0 as k- 0 by
(2), then the second equahty in (3) holds. O
The consequence of Lemma 4 is the following proposi-
tion.
Proposition 5: For each k>0, there exist unique com-
plex-valued countably additive regular measures v}, and
~7og on the Borel sets in 27, such that for each ¥ in
C(Z ),

L¥ (¥ fg) = f v, (W (X)

L5 (¥ f8) = f Vi g (DY(X) .

Moreover the following equahty holds for every Borel set E
in &,

Wing (B) =Vipop (B) = 3 v, (E),

k=0
where the series in the last member is absolutely convergent.
Therefore if, for each k>0, the measure v"ﬂ, ¢ 1S concentrat-
ed on a Borel subset E, of £,,, then the measure v, 4, . is
concentrated on the Borel subset U?_, E;.

Proof: The first half of the proposition follows from
Lemma 4 (1), 4 (2), and the Riesz representation theorem.
Next this and Lemma 4 (3) yield

N

+1=
kZ Vf.ﬁOg VQ’/‘Ox :

Vz‘ﬁo,g =

Further, by Lemma 4 (2), we get
[V~ (E)[<e((N + D)~ (ms)V*e™| £, llgll.

which converges to zero as N— oo. This proves the second
half of the proposition. O
J

Our next task is to see the support property of v,. We
shall show in Proposition 7 below that, for each k>0, the
measure vf.ﬁo ¢ is concentrated on the set of the Lipschitz
continuous paths X: [0,s] - R satisfying, for some k-parti-

tion0 =f,<t, < <, =softheinterval [0,s], depending
on X,
j=1 )
X -X(0)= Y (=D ~1_4)
i=1
+(=1Y@—¢t_)
or
j—1 _
X(1) —X(0) = z (=1 —t_y)

i=1
+(=1Y"'t—1_,),
for¢;_, <t<y;, 1<j<k.
For each k> 1, let A* be the open k-simplex

A = [(Tl’ ,Tk)ERk

2 7; <s and T,...,7; >0}

i=1

and @ | and @ 5 the maps from RX A* into &, defined by
¢;((x97-1’---)7-k ) (t)
=x+(—1yY

N, N,
lzl(—1)171+(—1)N‘+1(t— Z Tl)]!
= =1

(3.15)

for xeR, (7y,...,7, JEAX, t€[0,5], andj = 1,2, where N, is the
t-dependent integer satisfying

N, +1

2 7€t < z 7.

=1 =1

In (3.15), the value g | k(x,T15--sTx ) is a function: [0,5] R
and so belongs to 7.

For k = 0, we understand A° to be the set of one point
andidentify R X A°withR. Letp ¢ and @ ? be the maps from
R=RXA%into £,, defined by

PlxI(D) =x+(—=1)t, j=12.

Then the maps @}, k>0, j = 1,2, have the following
properties.

Lemma 6: (1) For each k>0 andj = 1,2, @} is contin-
uous and Borel measurable.

(2) pf(RXA*)isan F, set.

Proof: Statement (1) is obvious.

(2) RXA* is expressed as a countable union U,, 1 K,
of compact sets X, . By the continuity of ¢7 j»eachg j k(K,)is
compact in &, and hence closed, so @ F(RXA*) isan F,
set. O

For each k>0 and j = 1,2, define the complex-valued
regular Borel measure 1, on R X A* by

I=1

k k
Ushog (E) = f (f(x+ (= 3 (=D + (- 1)"+‘(s— D r,)]) N"B") (Ng(x)); dx dry---dr,,  (3.16)
E I=1 J
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where E is a Borel set in R XX A*.
Proposition 7: For each ( f,g)e#(R;(C?)') X # (R;C?),
k>0ands>0,
2
Vigos = 29 JBafos -
=
Here ¢ Fu¥,, is the image measure'® on £, induced
from the measure u, . on RX A* by the map ¢ }.

Before showing Proposition 7, we see ﬁrst what is a con-
sequence of the proposition The measure @ ~ud, . is con-
centrated on theset@ ; (R x A¥ ) and thus the measure v¥ F0.g
ontheset U 2_ 1P k(R A*). It follows by Proposition 5 that
the measure v, . is concentrated on the set

Uk 0 U]— l¢] (RXAk) »
which is a Borel set, in fact, an F,, set, by Lemma 6. Then the

(R X R;M,(C))-valued measure v‘o is also concentrated
on the set

Uk 0UJ_1¢J(RXAk)7

since this set is independent of (fg) in
F(R;(€C?)') X & (R;C?). It is obvious that every X in

Uk V] U/— l¢71 (RXAk)
satisfies the condition (2.7) in Theorem. In case m = 0, we
have v} ;o = V0, By Proposition 7 it is concentrated on
the set of the straight segments X: [0,s]-R with
X(t) = X(0) + tor X(¢r) = X(0) — ¢, 0<#<s, and so is v},
similarly. Thus we have seen Proposition 7 yields the desired
support property of vL,.

Proof of Proposition 7: It is enough to show that the
equality

f AVipo o (XY (X)
?:,0

&= (x,rl,...,'rk) R
holds for every WeCg, (£°;,). Here we only prove this
equality for & = 2. The proof will be still complicated for
general ¥ in Cg, (£°;,). So we only see it when W is repre-
sented as W(X) = F(X(0),X(s,),X(s)) with a partition
0 = sy <5, <5, = s of the interval [0,s] and a bounded con-
tinuous function Fon (R)3, i.e., (3.5) and (3.6) withn =
We can similarly prove the general case.
Recall that

eTA:(e—‘rax 0 ) B=( 0 BIZ)
0 e %)’ By 0/’

s,f()g (g)\ll(¢>1k(§))

F{H(x) =B2f der. dr, 0(s — s, — 7,)0(s;, — 1)
0 0

with  |By,| = |By| =m

By Proposition 5 and definition (3.14), we have
f v, COVD
=L 2o (V; £.8)

- f TN ~{F@(x) + F2(x) + F&(x) }dx.
R
(3.17)

Using (3.13), (3.11), and the anticommutativity of 4 and B,
we get

FER(x)=(S!_,F{)(x)

=.Bf deg(S—Sl—Tz)
(o]

X (e(—s+s'+212)AF§.lx))(x)
=BJ dee(S—Sl—Tz)

((F“’) x+5s—5,—271)
(FiD)a(x —s+s, + 2r2)) '
Here

FR) ="(F D), (F{),0).
For these functions in the integrand of the last member of the
above equation, we get

(F{)(x+5—s5,—27,)
= (S, FL s anx)i(x+5—5,—27)
=BIZJ(; dry 0(s, — 1))
X (e IR )X+ 85— —21)
=B, Lw dr0(s; — 1))

X (Ng),(x 4+ s —25, — 27, + 27))
X F(x+s—zsl —2T2+27'1,x +S—Sl _Zszx) >

and

(Fg,lx))z(x -5+ 5+ 272)
= ‘B21 f dTl 9(51 - Tl)
(V]

X (Ng)(x—s+ 25, + 27, — 27,)
XF(x—s+28, 421, —2r,x —5s+5, + 27,X) .
Hence we have

((Ng),(x—s+ 25+ 21, — 27 ) F(x —s+ 25, + 27, — 27, x — s+ 54 +27'2,x))
(Ng)p(x+5s—28) =27, + 21 )F(x +5— 28, — 27, + 27, X + 5 — 5, — 27,,X)

=Bzf deJ dr0(s — 1, — 1)0(1) + 75 — 5,)0(s; — 7¢)
o o

108 J. Math. Phys., Vol. 28, No. 1, January 1988

(3.18)

T. Ichinose and H. Tamura 108



((Ng),(x — s+ 2)F(x —s+ 21X —5s— 85, + 21, + 21',,x))
(Ng)o(x +5—21,)F(x +5 — 27X + 5 + 5, — 27, — 271,x) /)’
where, in the second equality, we have first made the change of variable 75 = 7, 4+ s, — 7, and next written 7, again instead of

75 . Similarly we have

Ff)’zz’(x)=Bzf dTZJ- drla(s—rl——rz)e(fl—sl)(
0 0

and
FR(x) = sz drzf dr, 0(s, — 1, — 7'2)(
0 0
Substituting (3.18)—(3.20) into (3.17), we get

J av; o (W (X)
?5,0

(Ng)((x —s+21)F(x —s+2mx —s + s,,x))
(Ng)(x 4+ 5 —21)F(x +5 — 275,x + 5 — 51,x)/

(Ng) (x —5+21,)F(x — s+ 27, x — s+ 5, + 27'2,x))
(Ng)(x+5—27)F(x +5—21px +5 — 5, — 275,x) )’

(3.19)

(3.20)

= J- dx fw dr, fw dry( f(x +s5s—21,)N"'B?),0(s — 1, — 75) [0(7; — 5,) (Ng) ,(x)F(x,X + 5,Xx + 5 — 27,)
R 0 0

+8(r + 17, — 5,)0(s; — 7)) (Ng) (x)F(x,x — §; + 27,x + 5 — 275) + O(s, — 7, — 7,) (Ng) ,(x)
X F(x,x+8, —2rx +5—21,)] + j dx J- dr, j dry f(x —s+21,)N " 'B?),0(s — 1, —1,)
R (4] 0

X[0(7) — 51) (Ng)2(X)F(x,x — 50,Xx — 5+ 273) + O(7y + 7, — 5;)0(s; — 7,) (Ng),(X)

X F(xx+38; —2r,x —s4+27,) + 0(s; — 7y — 75) (Ng) ,(xX)F(x,x — 5, + 27, x — 5+ 27,) ] .

(3.21)

Here, on the right-hand side, we have first made the change of variables x' =x — s+ 27, in the first term and
x" = x 4+ s — 27, in the second term, and next written x instead of x’ and x".
By the definition (3.15) of @ 7: RX A% £, j = 1,2, we have

PHx7,m)(0) =x, @i (x7TuT)(8) =x— (—1Y(s—27,),

x — (— 1)Ys,
@ (xTpm) (s) = x — (= 1Y (27, —5))
x — (— 1Y(s, —27,)
so that we can get after all

(s;<7),

(ri<s 1<+ 7)),
(r+7<5)),

2
J AV (XDW(X) = f dxf dridr, Y ( flx— (—1Y(s —27))N ~'B?);(Ng),;¥(p } (x,7,,73))
Z0 R A?

Jj=1
2

i=1
This proves Proposition 7 for k = 2.
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A formulation of supersymmetric quantum mechanics is given and superunitary and
generalized canonical transformations are defined acting in a module. Next it is assumed that
there are operators that give an irreducible representation of the canonical commutation and
anticommutation relations, respectively, and it is proved that two such representations are
connected by a uniquely determined superunitary transformation, under suitable domain
assumptions. This extends the well-known uniqueness theorem of von Neumann to canonical
(anti-) commutation relations using anticommuting parameters.

I. INTRODUCTION

Although supersymmetry had been invented more than
13 years ago,’ the study of systems with finitely many de-
grees of freedom, which have this symmetry, began only
after 1981.>~* Moreover, supersymmetric quantum mechan-
ics (SSQM) has been treated at the beginning only at a for-
mal level. After the first attempt to introduce a rigorous
framework in Ref. 5, a formulation of the axioms in terms of
sesquilinear forms together with a discussion of classes of
models as well as a description of the space in which super-
unitary transformations act, has been given in Ref. 6.

Here we extend these first steps in several directions. In
Sec. I1 we review the description of the Hilbert space for f
fermionic and f bosonic degrees of freedom. A Klein-Jor-
dan—Wigner transformation yields the connection to a space
being the tensor product of some separable Hilbert space
times a Grassmann algebra.® In that space representations of
Lie superalgebras yield quantum mechanical models.

The formulation of superunitary transformations needs
more. The separable Hilbert space is generalized to a module
that is obtained by using the Grassmann algebra of one ©
variable, over the field of complex numbers, as coefficients
(Sec. II1). Rules for evaluating sesquilinear forms are best
formulated with the help of the Klein operator. An analog of
Stones’ theorem for superunitary groups is formulated, too.

We next discuss one-parameter groups of superunitary
transformations in Sec. IV, which mix bosonic and fermionic
operators but leave invariant the canonical (anti-) commu-
tation relations [C(A)CR].

A natural question arises, which is at the origin of our
analysis. Irreducible representations of the CCR are accord-
ing to von Neumann’s theorem unitarily equivalent to each
other, and the same holds for the CAR.” Do similar results
hold for irreducible operator representations of Lie superal-
gebras? Beside examples and corollaries our main result of
Sec. V is formulated in Theorem 3. We start from operators
fulfilling the C(A)CR and assume certain domain proper-
ties. We prove that two representations of the C(A)CR are
connected by a unique superunitary transformation. Al-
though the proof is straightforward it is somewhat tedious
and put in Appendix A.
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Following the same strategy we formulate in Sec. VI the
extension of the above theorem to the case where one en-
larges the original Hilbert space by the Grassmann algebra
formed out of two anticommuting © variables; the proof is
given in Appendix B.

Il. THE HILBERT SPACE FOR f FERMIONIC AND 1
BOSONIC DEGREES OF FREEDOM

The Z, grading of the Hilbert space of states %, for f
fermionic and f bosonic degrees of freedom, may be ob-
tained from the Grassmann algebra G, of polynomials in the
anticommuting variables £,,....6, over the field of complex
numbers C. Any element £€G can be expanded into the 2/
monomials®

§=CQI+ 2 TR 2.1

€, CoiC...; €C,
; . t4 A
1<1;<"'<‘P<f

where I denotes the unit element of the associative superal-
gebra G. Here £ is called even (odd), if it is the linear combi-
nation of monomials &, - *-¢, with even (odd) p.

The derivative from the left 3, = d /¢, with respect to
&, is defined by the linear extension of

p
ke, g = z 8 ( — )leei.“'ti g,

(]
=1 ‘

3I=0, k=1,..f

where £,, means that £,, has to be omitted. For homogen-
eous elements £ ,, the degree deg £ is defined to be zero
(one) if § is even (odd); one therefore obtains the rule that

3 (€n) = (Buf)n + (—)**56(3m), k=1...f1.
(2.3)

The Grassmann algebra &/ of polynomials in d,,...,0,
may be combined with & , to yield the Clifford algebra K, of
polynomials over C in the variables ¢, and d,, k = 1,..., f;
which fulfill the canonical anticommutation relations
(CAR)

{Eisgk} = {aiyak} - 0, {Ei’ak} = 6ik1’ i,k = 1,...,_}(:
(2.4)

(2.2)
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The algebra (2.4) can be represented on the f~fold ten-

S
sor product ® C? by Pauli matrices o*,0°,
Ci=(—0)e e(—0)eo Lo ol,

t
k th place

k=2,. (2.5)
_ 1 0 _ (00
Ci=o"ehe el 12‘(0 1)’ 7 “(1 o)’

and the isomorphism Cl< ¢, and C <> 3y, k=1,..,/,
holds. With the scalar product®

Em=cddo+ ¥ ch.idi.,

1<iy < <lp<f

(2.6)

the Grassmann algebra & , becomes isomorphic to the uni-
tary space C?, and 9, =&}, k = 1,..., /.

The Hilbert space of SSQM is now defined by the tensor
product %, = 7, ® & ;, where °; denotes some separable
Hilbert space. From the Z, grading of &, one obtains an
orthogonal decomposition %, = %7 & 5 into even and
odd elements, with projection operators N, and N, project-
ing onto bosonic and fermionic states; K =N,—N,

= ( — 1)™ denotes the Klein operator.®

The scalar product for states ¥, P, with

V=ol+ Y

i ELY iy '/’i,---ip"/'o 0
1<h < < <f

2.7)
and & similarly, is defined by
(P|¥) = (dol¥ho) + 2

Iy < <ip&f

For f bosonic degrees of freedom we may take 7,
= L*(d’x) and denote .¥ ; = L *(d’x) ® 9 ,. The obvious

G ). (28)

s
isomorphism L. & (L *(d 'x) ® C?) shows that f distin-

guishable fermions on the real line are described by Pauli
spinors.

In L 2(d”x), the closed operators

xk +a/axk xk—a/axk
B=— -, Bl="—_"" k=1,.,1
k ‘/2 k ‘/2 f
dom B, = dom B} = dom x, Ndom p,, 2.9)
= —i ,
Pk a%,

fulfill the canonical commutation relations (CCR)
[B;B.]=0, [B.BL]=26ul, ik=1,..f, (2.10)
in the sense of sesquilinear forms.'° Taking the tensor prod-

uct of them with the bounded operators ¢, and d; on ¥,
yields self-adjoint supercharges

1_0+0" 2_ —i(Q—-0"
Q = v Q°= 7 )
; (2.11)
Q=v2 Y B,
k=1
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and the non-negative Hamilton operator of f fermionic
oscillators

S
H=Y H,
k=1

H,=BlB, +£,0, =402 +x2 +02)>0, (2.12)

r
dom HV?=dom Q'=dom Q%= kﬂ dom B, ® G;
=1
here the representation (2.5) is used to represent the spin-
flip energy
jor =ihe reLeo el ol,

One therefore obtains, in the sense of forms, the follow-
ing representation of the Lie superalgebra S(2) by self-ad-
joint operators in .Zf:

@Y =(@*»*=H, {0.0%=0,

{0k} ={Q*K}=0 (2.13)
or, equivalently,
0*=0, {0Q"=2H, {QK}=0. (2.14)

Every irreducible representation of the CCR for f bo-
sonic degrees of freedom in a separable Hilbert space is uni-
tarily equivalent to the harmonic oscillator representation
(2.10) according to von Neumann’s theorem’; similarly ev-
ery irreducible representation of the CAR for f fermionic
degrees of freedom in a separable Hilbert space is unitarily
equivalent to the representation (2.5). These two unique-
ness theorems can be generalized to superunitary transfor-
mations that mix bosonic and fermionic operators, using an-
ticommuting parameters.

lll. SUPERUNITARY TRANSFORMATIONS

Whereas at least two anticommuting parameters are
necessary in order to construct the Lie supergroup corre-
sponding to the Lie superalgebra (2.13),"" one needs only
one such parameter O for an appropriate definition of super-
unitary transformations of CCR and CAR. The skew-sym-
metric tensor product of the Clifford algebra X, with the
Grassmann algebra &, of polynomials in © with complex
coefficients'? is an associative superalgebra over C, and also
a Lie superalgebra with anticommutation rules
{6,6}=1{6,0,}=0,k=1,...,f,and > = 0.

The Hilbert space 77, is extended to the &, module
H 00K =7,(0) (Ref. 13) with elements ¥
=¥, +0V¥, ¥, and ¥,&%°,. The scalar product on
K XKy is generalized to a sesquilinear mapping from
H1(©)XH(O) onto Z ,°:

(6D|¥) = (D|OY) = O(D|KY), Ve,

(8,)t = 3,0. (1)

A densely defined linear operator 4 in #°; may be decom-
posed into an even and odd part,

A=A4Ay+ A, Ay=N, AN+ N, AN,,
A, =N AN, + N AN,,
with dom 4; = dom 4, = dom 4, under an additional as-

3.2)
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sumption: for all Yedom 4, KWedom A. The domain of 4 is
then called graded (for the notion of a graded subspace see
Ref. 12). The adjoint operator can then be decomposed into

At=AY +A4}, A} =NA'N,+NA'N,

3.3
At =N N, + NA N, G-

with dom 4§ =dom 4] =dom 4", if dom 4" is graded,
too; this we shall assume from now on. With the definitions

A0 = OKAK = O(4y— 4,), AK=K(dy—A4,),
and (3.4)
(GA)"=GK4*K=9(AE—AJ{)=A*G, OK = KO,

one obtains immediately the rules
(D|OAY) = 0 (P|KAY)

= 9(@1(140 —Al)qu>
=04} —41)D|KY)
= O(4KD|¥) = (4} — 4])®|O¥)

= (4'00|¥), WYedomd, PedomA’.
3.5)

In order to construct superunitary transformations, we con-
sider the operator family

gy =I1+06td, A=A, +A4, A,=id},
(3.6)

g =I+tA'0=T—-it0A' — 104, t real

If A} and A, are symmetric, then obviously the products
818" (1) =g"()g(1) =I|soma> 1 real. (3.7

This transformation g(#) may be extended to a domain
domAe O, of states ¥,+ OV, with ¥,edomA4
and W,e5,, which is usually written as g(¢) = exp(1©4),
t real. Operators B+ ©A4 are defined on the domain
dom(B + ©4) = dom(B + 4) ® © dom B, which is a sub-
space of the above-defined &, module; dom B and dom A
are assumed here to be graded; then (B4 64)'=B"

+ A0, if dom BT and dom 4 ' are graded, too.

Definition 1: The transformation g(¢) =171+ 614
with 7 real is called superunitary iff 4 is odd (4, =0) and
self-adjoint (4, =41); thendomg(¢) =domg'(s)

=dom 4 & O57,.

The operator family (3.6) fulfills the group multiplica-
tion law g(¢)g(s) = g(z + s), t and s real. Conversely, the
following analog of Stones’ theorem holds.

Lemma 1I: Consider an operator group g(1)

=TI+ O©A(t) with 4(¢) densely defined in #°,, which
fulfills the group property g(t)g(s) =g(t+s), ¢t and s
real, g(0) =1, in the sense of operator sums A4(f - s)
=A(t) +A(s), A{0)=0. Assume that dom A(z)
=domA(—1t), for t>0; then domA(r) =domA,
A = A(1), for all ¢t. If the mapping {(P|4()¥); reR} is
continuous for all &, WYedom A, then A (¢) = t4 holds for all
teR.
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Lemma 1 follows since A () — t4(1) = O for all ration-
al numbers ¢.

If the unitary operator U is decomposed according to
(3.2), U= U, + U,, then KUK = U, — U, is unitary, too;
oneobtains U Uy + U U, = U, U} + U,Ul =1

IV. GENERALIZED CANONICAL TRANSFORMATIONS

The one-parameter group of superunitary transforma-
tions

gty =1+ 614,

AK= —KA on K-domA4=domA4, A=4", @1
giy=1—06t, gHgt)=g1)g" (1) =1|smen
g(t+s) =g(1)g(s), ¢ and s real,

dom g(t) = dom 4 & 657,

may be used to perform generalized canonical Bogoliubov
transformations, which mix bosonic and fermionic opera-
tors:

B (1) =g()B.g"(t) = B, + Ot [4.B],
dom B (¢) =dom [4,B,] #© dom B,,
Ci(t) =g(1)3,8"(t) = 3, + ©1{4,3, },
dom C; (1) =dom {4,3,} ® ©57,

for ¢ real and k = 1,..., f. The adjoint operators are given by
BiMt)=B} —©t[4,B,1'DB] +6t[4,B}]

=g()Blg'(0),
CiHt) =¢, +6t{4,0, ' D¢, + Ot{d,6,}

=g(1)e8'(0).

Note that dom A is assumed to be graded, which in turn
implies that the domains of [4,B,], [4,B]], {4.4.},
and {4,¢, } are graded, too.

These transformed operators, acting in the 2, module
# ;& OH;, obey again the CCR and CAR in the sense of
sesquilinear forms, with domains of B ;'(¢) and C;'(¢) re-
stricted, according to (4.3), to dom [4,B]] ® © dom B,
and dom {4,¢, } ® ©5, respectively:

4.2)

4.3)

BN B ) —(BL()|BID) =6,(]), a4
(CH@) |CHO Y +ACLW|CUD ) =85 (-]"),

and similar (anti-) commutation relations for C(¢) with
C . (t)and B [(t) with B/ (¢) and between them. These rela-
tions cannot be extended to the domains of B '(#) and
C 1 (2), in general.

The form invariance of the C(A)CR under superuni-
tary transformations is at the origin of our attempts to ex-
tend von Neumann’s uniqueness theorem for irreducible
representations of the CCR and the corresponding theorem
for the CAR to representations of the C(A)CR in the &,
module 7%, @ 07

V. UNIQUENESS OF C(A)CR IN 7, e 0.7,

An irreducible representation of the canonical (anti-)
commutation relations by closed operators in #°; is, up to
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unitary and superunitary transformations, unique, in the fol-
lowing sense:

Theorem 1: Let C,, k = 1,..., f, be bounded operators on
the separable Hilbert space 57, and let B,, k= 1,..., f, be
densely defined closed operators in 7%, Assume that the ca-
nonical (anti-) commutation relations { C(A)CR] hold:
CCL+CLC =681, CC,+CC =0, ik=1,..f
BBl —B}B,CI, domB,B| =domB}]B,. (5.1a)
Ondom B, =dom B},(B, + B})/v2andi(B} — B,)/V2
are essentially self-adjoint; their closures will be denoted by
X, and P,. Assume next that the commutation relations

BB, —B,B,=0, BB} —B}B, =0,

i#k, Lk=1,..f,
hold for the spectral families of X, P;. In addition
BC,-C.B, =0, BIC,—CBI=0, ik=1,.f,

(5.1¢)
should hold for these spectral families. Finally, the operator
family {B,,B},C,C}; k = |,..., f } is assumed to be irredu-
cible in 57, which means that there does not exist a non-
trivial invariant closed linear subspace of 7 for this family.

Then there is a unitary transformation U

s
H > (L2%(d"'x) ®C} such that

(5.1b)

UBkU—l = (xk +ipk)/‘/§7 k= 1,...,f;
UC U '=(-0)e-e(—0c)eo eLe 8l,

(5.2)

1
fork=2,..,f, k th place

UC U '=0"eLe - eol,

Remark: It follows that each representation of the
C(A)CR in the sense of (5.1) is, up to unitary equivalence,
the direct sum of countable many fermionic oscillator fam-
ilies (5.2).” This uniqueness theorem can be extended to the
following representations of C(A)CR in the &, module
#; ® OX ;. We start with the case of one fermion, f= 1.

Theorem 2: Let the linear operators B and C fulfill all
conditions of Theorem 1 with = 1, such that one may iden-
tify B=(x+ip)/v2 and C'=¢, C=3d=4a/¢ in
H =K =K#y0%,=L*(d'x)®%,. Let D and G be
densely defined closed linear operators. Define

B'=B+4 0D,
dom B’ = ((dom B® ¥ ,)Ndom D)
6O(dom B8 Y,), (5.3)

C'=3d+6G, domC’'=domGeO%,
B*"=B'-0D' Ct=¢+6G",

where G(D) is assumed to be even {odd); we may identify
e =0',d =07 on ¥, = C2 The new operators are assumed
to fulfill the C(A)CR in the sense of operator polynomials,
ie.,

c?=0, [B',C']1=0, [B'.C"]=0. (54)

Moreover, the following domain conditions are as-
sumed. With
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G = Gyly + G189, D =Dy + Doi9, (5.5)

such that D,g, Dy,;,Gog, and Gy + Gy, are closed and densely
defined in 57, assume that

dom Gy, =dom G},, dom Gy,Cdom G,,, (5.6)
dom D,,Ndom Dy, is a core of both D, and D,
dom [B,Gy,] Ndom D,yNdom Dy,

is a core of both [B,Gy] and D, (5.7)

dom [B,G §, Jdom Dy;Ndom Dy,

is a core of both m and Dy,
where T denotes the closure of the operator 7. Then one can
write

G = Gool =1{4,3},

D= T[AB] withAd=Gue+Gld=4",
and the transformation (5.3) is implemented by the super-
unitary operator exp(64) such that

¢®'Be~° =B+ O[4,B1CB/',

C’'=¢e% de % =3+ 6{4,73}.

Corollary 1: Under the conditions of the above theorem,

Dyy= [Gop,B] and Dy = [Gl.B].

Remark: Tensor products of operators L®7 with
dom L C 57, will be written sometimes as L, and the identity
mapping I of & ; will be suppressed.

Corollary 2: There exists only one self-adjoint odd oper-
ator that generates the superunitary transformation (5.9),
namely 4 defined above.

Proof of Theorem 2: With the ansatz (5.5), C'? = 0 and
(5.6) implies that G = G,[,. Here 4 is self-adjoint because
G, is closed; (5.6) implies that G = {4,}; [B',C'] =0,
[B',C'"'] =0,and (5.7) leadsto D= [4,B].

Corollary 3: Under the conditions of the above theorem,

[D.B'1211G,B1,B'le + [[G',B],B']dC[B.D']
(5.10)

(5.8)

(5.9)

holds; moreover, the equivalence
[B',BT]CI if [DBT]—[BD']=0
follows. The conditions
dom[[G,B1.B7]
isacoreforboth [ [G,.B],B'] and [B,[GT,B1'],
dom [[G1,B],B'] (5.12)
is a core forboth [ [GT,B1,B*] and [B,[G,B]'],

imply that [D,B'] = [B,D'] and afortiori [B',B't]CI.

Example 1: If one chooses G = cB with ¢ complex,
D = — ¢*3d and one obtains the superunitary transforma-
tion®

(e)-le 76
o Tl T)=6 2)
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Example 2: For G = cB*, ¢ complex, D = — ce.

An extension of the above theorem to the case of f fer-
mionic and f bosonic degrees of freedom follows from a
similar strategy as before. We require the C(A ) CR as opera-
tor polynomials and assume appropriate domain conditions.

Theorem 3: Let C, be bounded, B,,G,, and D, be
closed and densely defined operators in #°, for k = 1,..., f.
Decompose 7 into two infinite-dimensional orthogonal
subspaces % =¥ e and let B, and G, be even,
C, and D, be odd. Define

B, =B, +0D,, C,=C.+06G, k=1,..,1,

(5.14)
and note that

B;'=B} -©D}, C/'!=C} +6G] (5.15)
follows, since the domains of the operators involved are
graded. Assume

[B;,B;j]c_:&,»kl, [B;,B,;]=O, [B;,C;]=0,
{c;circésd, {ciciy=0, [B,C=0,
ik=1,.,f (5.16)

Let dom B, B| = dom B} B, and define X, P, as in
Theorem 1. Assume that the commutation relations

[B;,B,] =0 and [B,B}]=0, for i#k,
(5.17)
[B,C.]=0 and [B,CL]=0, for ik=1,.f

which hold according to (5.16) in the sense of operator poly-
nomials, hold also in the sense of the spectral resolutions of
X,, P,. Assume in addition that the family {B,,B},C,,C];
k = 1,..., f } acts irreducibly in 5, such that we may identi-
fy, according to Theorem 1,

KoL, Bio(x, +ip)/V2, Cleoe,

5.18
Ck(—)ak, k = 1,...,f; ( )

by an appropriate unitary transformation. Introduce com-
ponents for G, by writing

Gk=G2+

I<p < <p<Sf

Py b, e
G k gPl EP:

+ Y G,

'3
1<g, <~ < q,<f

°d,

Tu

Pr Pridy g,
+ 2 G kl ' sEP] £pr aql aqs’
1<py < - < p,<f
1I<g1 <+ < g<f
tu,r + s even, (5.19)

and assume that there is some domain

f
¢ C n} (dom G ¥?Ndom G 9,
b (5.20)

¢ ®Y,C dom D,Ndom D],

suchthat €, = € ® ¥ ,isacorefor G, and Dy, k = 1,..., f.
Here {p,q} denotes the 2 ¥ combinations in (5.19). More-
over, assume
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¢ CdomB,, B,2UBl¥C%,
GP9% UG P?% Cdom B,.

Then the following conclusion holds. There exists exactly
one densely defined operator 4 such that 4 is symmetric,
domd4 =%,

{A’Ck}=Gk =Gk|(€f’ [A’Bk] =Dk =Dk|(€f’

k=1,.,f
Then obviously
G.= {4.C}, D= [4B], k=1,.f

The proof of this theorem is given in Appendix A.
Corollary 4: Under the conditions of the above theorem,

¢®B.e~® =B, + ©D,CB},
e®Ce~®=C, +06G, CC,, k=1,..f

Remark: The transformation (5.24) need not be super-
unitary, because 4 may only be symmetric. The explicit rep-
resentation of 4 in terms of components G {4} whichis used
in the subsequent proof, may be used to impose conditions
such that 4 becomes essentially self-adjoint.

Remark: For practical use conditions (5.21) might be
strengthened. One may require the existence of an invariant
domain ¥ , for instance, € = S( R/), the rapidly decreasing
C = functions, for all the operators involved.

Example 3: The essentially self-adjoint operator

(5.21)

(5.22)

(5.23)

(5.24)

. S . .
A=Y (&By +3Bl), B.=By,, ¢ =C5R),

k=1
(5.25)
generates
{A,ak}=Bk, [A,Bk] = —akiCer’ k= 1,...,f;
(5.26)
which leads to the superunitary matrix transformation®
B,=B,-64, C,=0,+06B, k=1,.,f
(5.27)

The closure of this generator A is just one of the two self-
adjoint supercharges of the /~dimensional fermionic oscilla-
tor,

- f
Q'=4= Y (B, +3,B}),
k=1

domQ'=domB,® Y, (5:28)
and obviously
{09} =B, , , [@LBk]& — 3. (5.29)

M dom Bye Gy
=1

Similar matrix transformations are generated by the essen-
tially self-adjoint operators

. S . . ,
A= Z(Ska +akG£), Gk= —lBk or lBiIg’
k=

1

- S —
A= E (&xGr +3,G}), G, =G, (5.30)
k=

1
dom 4 = dom B, e Y,
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Vi. TRANSFORMATIONS WITH TWO ANTICOMMUTING
PARAMETERS

More generally, superunitary transformations with
more than one anticommuting parameter can be studied.
They lead to Lie superalgebras that are much more compli-
cated compared to the one of Egs. (A3). As an example
consider the supergroup constructed from the Lie superalge-
braS(2) withtwoself-adjoint supercharges Q ' and Q *acting
in the Hilbert space 5,

(0?2 =(Q0%?=H, domQ'=domQ?=domH"?,
{004 =0, {Q',K}=0, K=N,~N,, (6.1)
where the anticommutators hold in the sense of forms, and
N, (N,) project onto even (odd) states.

For the construction of the corresponding supergroup,
the Hilbert space 7, is extended to the &, module
#;(0,,0,) with elements

¥, +0,¥, + 6,¥, + 0,0,¥,,%,(0,,6,),

Vo, ¥,,¥,,¥ €7,

The Grassmann algebra of polynomials in the anticommut-
ing parameters ©,, ©, with complex coefficients will be de-
noted by Z , and the tensor product of &, with the Clifford

algebra K, is constructed. The rules for adjointness and the
scalar product® imply, for example,’

(®](,0, + ¢,0, +¢1,9,0,)¥)
= (¢,0, +¢,0,) (<I>|K‘l’) + Clzelez(q)m’)a

(6.2)

€1,€2,¢1€C, P,Ve;. (6.3)
With the notation
Q=(Q'+iQ*>/V2, ©6=6,+i0,, 64)
6*=06,-i0, 6°=0*=0, )

one writes the general element of the supergroup generated
by S(2) as
g(t;s,r) = exp(itH + isQO + is*©0*Q ' + irHOO*)
= " (I + isQO + is*0*Q"
— 1|s*{006,6*Q '} + irHO6*)
=g(#,0,0)g(0;5,0)¢(0;0,7), seC,
(6.5)

which is defined as a sesquilinear form on dom Q
= dom H /2,
The corresponding composition law becomes
gles,rglt's,r) =gt +t';s+5r+ 7 +2Im(s's*));
(6.6)
these transformations are superunitary in the sense that
gts ) =gtsr) ' =g(—t;,—s5,—7) (6.7)
on form dom g(#;s,r) = dom H "/?for t and r real, and s com-
plex.
With the help of the supercharge

f
0=v2 3 &8,
k=1

for the f~dimensional fermionic oscillator one obtains the
(anti-) commutation relations

t,reR,
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{Q,ak}gmk, {QT,ak} = 0; [H,ak] g — ak)
[QT»Bk]gmk’ [Q’Bk] =0, [H’Bk]g —Bk,
k=1,.f1 (6.8)

Relations (6.8) lead to the following transformation of the
fermionic oscillator Lie superalgebra:
eitHake—itﬂze—itak, eitHBke—itfl:e—itBk’

eirHee‘ ake — irHee‘gak _ ”.ee* ak,

eirHee‘Bke — irHOO* gBk _ iree*Bk , (69)
£(0;5,0)9,2(0; — 5,0) &3, — isV2OB, — |s|*060*3,,
£(0;5,0)B,g(0; — 5,0) & B, — is*v20*3, + |s|°00*B,,

t,reR, seC, k=1,..,f

An obvious composition of these superunitary transfor-
mations leads to an interesting group of automorphisms of
the C(A)CR.

The question of whether any automorphism of the
C(A)CR with two or more anticommuting parameters is
implemented by a unique superunitary transformation leads
to rather complicated generalizations of the Lie superalge-
bra (A3). We consider first the case of one bosonic and one
fermionic degree of freedom, and then generalize to f>2
fermions.

To start the explicit construction of superunitary trans-
formations g for f= 1, we define

g=exp(0,4, + 6,4, + 6,06,7)
=I1+6,4,+6,4,+16,6,[4,4,] + 6,6,T,

Al =4, k=12, T'=T,
g Dexp(— 06,4, — 6,4, — 0,6,7),

(6.10)

where A is an odd and T'an even operator in the Hilbert space
£, =L*d'x)® % ; then

dom gt Ddom g

= dom gg' = dom g'g
= dom[A4,,4,]Ndom T® O, dom 4,
®0,domA4,96,0,.7;

in addition gg* = g'g = 1,4, .. The transformed operators
gBg', gB 'gt, gdg", geg' fulfill again the C(A)CR on appro-

priately restricted domains.
With the special ansatz

A, =Ge+Gld, G, closed, dom G, =dom G},

G, =1{4,,0}, k=1, (6.11)
one obtains the transformed operators
gBg'=B+6,[4,,B] + 6,[4,B]
+©6,0,(4,BA, — A,BA,
+ ${[4,,4,1,B} + [T,B]), (6.12)
H. Grosse and L. Pittner 115



gagf = a + el{Al,a} + ez{Az,a} + 9162(A2(9A1
— 4,04, + %{3, [4,,4,1} + [T,8])
23+ 6,G, + 6,6, + 0,0x[G,,G,]
+0,0,9(3[ GG 1]
—[GLGIH +T"-T"),
where we decomposed 7=T'ed + T" de with T’ and T"
being self-adjoint.

Conversely, given an automorphism of the C(A)CR,
there exists under suitable domain conditions a superunitary
transformation implementing it.

The following theorem generalizes this implementation
to the case of f fermionic and f bosonic degrees of free-
dom.

Theorem 4: Let C,, be bounded operators in the separa-
ble Hilbert space % = #° & 5", and let B,, D', G, E,,
and F, be densely defined closed operators in 5#°. Assume
that B,, G%, and E, areeven, C,, D%, and F, withi= 1,2,
k = 1,..., f, are odd. Define

B;=B,+06,D; +6,D}; + 6,6,E,
Ci=Cc+ elallc + ezai +6,6,F,,
B I'(TT —B .

Cl=Cy;, k=1,.,f

Assume that these generalized operators fulfill the
C(A)CR in the sense of operator polynomials,

{C;,C}'}:O, {CI:’C;T}gaij)

[B’IC"BJ,] =0, [BL’B;T] C_:‘Skjly

[B:,C;1=0, [B:i,C/']1=0, kj=1,.f

Moreover, B, and C} are supposed to obey the same
conditions as in Theorem 3 and can therefore be identified
with (x, +3/0x,)/v2 and €, k = 1,..., f, and 57 can be

identified with ..
Next we introduce components for

(6.13)

(6.14)

[ i
Gi= kpy e pagya;Ep, Ep,aq. aqs’
I<py < <p<f
I<g < " <g<f
r+s=0,24,..
i=12 k=1,.f (6.15)

and similar components D, ... prar--ap With 7 + s odd, for
¢ components for E, with r + s even, and components for
F, with r 4 5 odd; assume that ¥ is an invariant dense do-
main for all these components and their adjoints as well as
for B, and B} withk = 1,..., f. o
Then there exist unique symmetric odd operators 4,4,
and a symmetric even operator T, defined on the domain
€;=% &Y, such that

Gi Q{“ii’ak}’ D2 [Ai’Bk ], i=12,

F, Ql‘iz ak“il _/.1151:/.12 + §{ak’[1;‘2,1;11]} + [T’ak]:

E, 24,B A, — 4B A, + 1By, [4,4,1} + [T,B],
k=1,.,f1 (6.16)
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The proof of this theorem is given in Appendix B.

Corollary 5: If T'is another symmmetric even operator on
% ; that fulfills (6.16), too, instead of 7T, and if each compo-
nent of T — T'is essentially self-adjoint on & = S(R/), then
T — TCt for some real ¢.

The proof of Corollary 5 follows from Kato’s condi-
tion,' since (x, + i€ = (p, + i€ = %, which im-
plies that 7 — 7"commutes strongly with both x « and p, for
k=1,.,f

Corollary 6: Under the conditions of Theorem 4 it fol-
lows that the transformation

g=exp(0,4, + 6,4, +0,0,1)
=1+6,4,+ 6,4, +10,0,[4,,4,] + 0,6,T, (6.17)
§'=1-041 0,4} —10,6,(4,4,]' - 0,0,T"
Dexp(— 0,41 —0,41 —©,0,T,

with gg'=¢g'¢=1,,,,  domg'Ddomg=domg'g
= dom gg', implements the automorphism (6.13), i.e.,
Bl’c QgBkgT! Cl'c ankgT’ k= 1»---7f: (618)
Corollary 7: For the case f= 1, let
i — Gi11+ Giu£ a ,
1 1 1€1¢ (6. 19)

dom G¥ =dom G}'Cdom G, i=1,2;

assume that ¢ is a core for G¥. Then one especially obtains
that

Gi={4,0}, G"=0, 4, =GV, +Gi3, =41,

i=12. (6.20)
Example 4: The choice
f
A1=l'\/2 Z ('—SBkEk +S*Blak),
- (6.21)

S
A2 =V2 Z (SBkEk +S*B lak)s SEC,

k=1
corresponds to self-adjoint supercharges of the f~-dimension-
al fermionic oscillator. Using its Hamilton operator

f
T=23% (BIB, +¢€,d,), reR, (6.22)
k=1

yields the supergroup element g(0;s,r), which was defined in
(6.5), for this model, and which implements the automor-
phism group (6.9).
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APPENDIX A: PROOF OF THEOREM 3

Here we give the proof of Theorem 3. An appropriate

operator basis for &, is given by the 22’ monomials

I’ gpl...gpr (1<pl<...<p’<f‘),

(Al)
aql...aqs (1<q1<...<qs<f'), Epl...gpraql...aq:.
The (anti-) commutation relations
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0, for k&{px ,»
{gp: . .sp,aqr o 'aqs’a"} (=) e 1 &, 'ép,

3,0 = (= Dy by

£.Pr a?l

g,

'€ 4@

Pr

[€n €50,

follow easily from (2.4). The C(A)CR (5.16) imply the Lie
superalgebra

[Di.Bi] — [D1Bi] =0, (A3a)
[Bx,G1 +{8,.D:} =0, (A3b)
[B:,G]] + {&,,D} =0, (A3c)
[Ge0:] + [G13c]1 =0, (A3d)
[Gue:]1 +[G18:] =0, (Ale)
[D.BI]+ [P]B:] =0, kil=1,.,f, (A3f)

in the sense of operator polynomials. Next we insert the an-

satz (5.19). (A3d) implies for k=1 that G =0 if
kelp,....p,}; (A3d) implies for k #/ that
(— )IGP;"'h"'p, o0 s
= (= )"Gh TIPS k=p, h=p,,
r+s—1=024,.., (A4)

where G 24} denotes the restriction of the components de-
fined by (5.19) to €. We therefore may define

A= g, e, AT
1I<ps < <p<S
rodd
+ gp, Ep,aq. ..aq’ArPr"Prql"'qs’
I<p < <p&f
I<q, < - <g,<f
r+s odd
(A5)
ondom A4’ = ¥, with
A an"'Pr= ( _ )l»« lGix"'ﬁl"'Pr’ pl — k, 1(1(",
A*=G2, k=1,.,f (A6)
AP0 (L )l—1Gin“'h'“1’,,q.“*q,
and obtain
G, = e e 8 g Gla
k %} P P g Uk
r+5=02,4,..
={4'8,}, k=1,.,f. (A7)
Define next
Hy= [BoA' 4+ D0 K= [Bod"e] + D0 (g,
Dk =Dk1%f’ dom Hk = dOm Kk = %f’ k = 1,...,];

using (5.21); (A3b) and (A3c) imply then that H, does not
contain components with ¢, ** -, , and K, does not contain
components with d, -**d,. Define F'=4'—4"" on
dom F' = % ,; using (A8) one obtains

[B,F'®9] = [BLF'P9] =0, (A9)

for {p.g} ={p, - p,.q," "4, } with rs>1, r + 5 odd; here
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for k =p;, r+ s odd, (A2)

[ 24

fork=p, r+ seven,

the F'{P4} denote the components of F' in the basis (A1).
Redefining

19t

A=4"+ 3, 9,47 ¥, domA=%,
1<q < <g<Sf
sodd
(A10)
one obtains the desired (anti-) commutators
[Bid]= —Diy {04} =G, k=1..f (A1l
The redefinition (A 10) implies next that
FeA—At= £, €, 0, O PP,

I<py < <p,<Sf

I<gy <+ <q<f

rsa>1,r + sodd

dom F = % s (A12)

and obviously FC — F*. As the last step of the proof we
insert (A1l1) into (A3e) and calculate

FakE, + ak81F+ akFSI bt E,Fak e 8kIF= 0,
kl=1,.,f (Al13)

Inserting (A12) into (A13) gives F=0, which finally
implies that 4 is symmetric. This symmetry of A obviously
implies its uniqueness.

APPENDIX B: PROOF OF THEOREM 4

Here we give the proof of Theorem 4. Inserting (6.13)
into the C(A)YCR (6.14) one obtains super-commutation
relations for the closed operators involved. These equations,
which do not contain £, and F,, k = 1,..., f; are just the
same as in (A3) and lead therefore to the symmetric odd
operators 4,. The remaining relations look at a first glance
rather complicated, but can be simplified after introducing

F.= AZakA + 4,34, — é{akt[/ibfil]}’
E. = Ek — 4,B, 4, + 4,8, 4, — {B,,[4,,4,1},
k=1,..f, (BD)

and lead to the Lie superalgebra
{8,.F} + {8, F.} =0, (B2a)
[Bo.F ] + [Ed] =0, (B2b)
[Bi.F11+ [61,E] =0, (B2c)
[Bk»EI] - [BI’EI:] =0, (B2d)
[B.E]]+ [BLE] =0, (B2e)
{ee.F} — {0, F1} =0, ki=1,..f. (B2f)

Now, following the analysis after Egs. (A3) of Appendix A
one obtains an operator T of the form
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j IR
Tr= 2 (=) Fk:P-"'h"'p,.{q}sP. Ep’aq‘ aqs
k=p;
7+ seven
r>1

+ 2 (= I)IFI,pl---h'”Prapr'”apl
k=p,
r>l

in analogy to (A10); T fulfills the commutation relations
Fo.=[Td.), E.=[TB.), k=1..f (B4)
If one inserts (B3) into (B2f) one finds that 7'is symmetric.
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Some basic properties of the energy level sets for parameter-dependent systems are analyzed. A
class of Hamiltonians depending linearly on two parameters is considered as a working
example. It is shown that an approximate computation of the boundary of the level set can be
useful to derive analytical representations of the eigenvalues of the system. The expressions
deduced for the eigenenergies have the correct analytic behavior in the whole range of all
physical parameters. In the simplest case, a nonvariational upper bound to the ground state
energy is derived that satisfies both virial and Hellmann—-Feynman theorems, as well as first-
order perturbation theory. Furthermore, some approximations are obtained, within the
framework of the scaling variational method, that are numerical upper and lower bounds to
the exact eigenvalues. Applications are illustrated with a family of anharmonic oscillators.

I. INTRODUCTION

The derivation of approximate expressions for eigenval-
ues of parameter-dependent systems has attracted attention
time and again. Several developments have been motivated
by the desire to determine which is the basic information that
should be used to describe, qualitatively, the analytic behav-
jor of the energy in such systems.'~®

It is well known that the virial theorem (VT) and Hell-
mann-Feynman theorem (HFT) lead to a differential equa-
tion that fixes the essential dependence of the eigenvalues on
the parameters contained in the Hamiltonian. In particular,
when an appropriate general trial function is optimized
variationally, the approximate expression for the energy sat-
isfies both theorems and it allows one to describe not only the
correct qualitative behavior of all the eigenvalues with re-
spect to the above parameters,' but also in terms of the
quantum numbers.>'° This constitutes the essence of the so-
called scaling variational method (SVM).>!1~!4 The analyt-
ic description it provides for the eigenvalues is believed to be
independent of the basis functions chosen. However, this has
not yet been proved. '’

Recently, several authors have proposed a more general
approximation to the problem above. It consists basically in
building families of functionals that are solutions of the dif-
ferential equation determined by the HFT and VT.'->%15:16
These functionals include as a particular case the approxi-
mation given by the SVM, but they can be easily general-
ized." A very attractive feature of this approximation is that
it allows one to take into account all the information avail-
able about the systems, while it always keeps the correct
dependence of the energy on all the parameters of interest.
Among the usual sources of such complementary informa-
tion one should mention the Rayleigh—Schrédinger pertur-
bation theory (RSPT) and the semiclassical limit of the en-
ergy.>!® This approximation in terms of functionals can
explain easily some intriguing results, for instance, the cause
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of the coincidence between the analytic behavior predicted
by the JWKB method and the variational theorem.!’

As a result of the above studies, there is some interest in
searching for new, simple representations for the energy
based on different principles. Of course, the new expressions
should present, if possible, the convenient features of the
functional solutions of the HFT-VT differential equation, as
well as leading to possible improvements.

One of the aims of this paper is to construct such a fam-
ily of approximate expressions for the eigenvalues of param-
eter-dependent systems.

Our starting point are some relationships derived pre-
viously from level sets of the energy of systems depending on
linear parameters,'® including, in particular, those for the
electronic energy of polyatomic molecules in the abstract
space of nuclear charges.'®?* This space can be given a topo-
logical structure from its partitioning into level sets, and this
approach has been useful for deducing different bounds for
the electronic energy.'®! Recently, we have shown that, in
the simplest case of diatomic molecules, the curvature prop-
erties of the boundaries of the above level sets can be used to
obtain approximate analytical expressions (upper bounds)
for the electronic energy as a function of both nuclear
charges and interatomic distances.??>?* It was also shown
that the basic structure of the function providing the bounds

was the same as it is for the exact electronic energy.”®> How-
ever, it was not clear if those bounds had any relationship
with the ones provided by the usual variational method, and
if they could be improved and generalized to some other
systems.

In this paper a method to derive approximate expres-
sions for eigenvalues is presented. In its formulation we
make use of the basic properties of the boundaries of level
sets. For the sake of simplicity, we confine ourselves to sys-
tems depending linearly on two parameters; in this case all
the equations posed by the method can be handled rather
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easily. In spite of their simplicity, these systems include some
models of actual physical interest. Moreover, the extension
to other problems depending on more parameters, as well as
those presenting nonlinear dependences, is possible.

In the case of two-parameter systems, the boundaries of
level sets are simple curves, which could be termed “con-
stant energy trajectories” (CET).*' From now on, we refer
to the procedure as the CET method. As it is shown below,
the technique allows one to derive new approximate expres-
sions for the eigenvalues that share many of the properties
characteristic of the functional solutions of the HFT-VT
differential equation. As in previous methods, the algorithm
seems well adapted to introduce available analytical infor-
mation. As is shown in this paper, in many cases the present
alternative has some advantages.

The paper is organized as follows. In Sec. II we summa-
rize briefly the basic properties of the CET’s for a general,
well-defined family of Hamiltonians. A very simple nonvar-
iational upper bound to the eigenvalues is derived in this
section. The analytical properties of this bound, as well as
some possible methods for its generalization, are also dis-
cussed in Sec. II. Following the ideas presented in Sec. II, in
Sec. III we derive several approximate expressions for the
eigenvalues of anharmonic oscillators, in order to illustrate
how the method works. Numerical results are shown for
some eigenstates of the quartic anharmonic oscillator. A dis-
cussion comparing the procedure with some other tech-
niques involving similar information is also included. We
conclude in Sec. IV with some comments about possible ex-
tensions of the method.

Il. BASIC RESULTS AND ELEMENTARY BOUNDS FOR
EIGENVALUES

In this paper we deal with the following family of differ-
ential operators:

H(Z,Z)) = - A+ ZVi(x)+Z,V,(x), x€R, s>1],

(D

where A is the Laplacian operator in ‘R. The potential in (1)
is defined according to the following conditions.

(i) Z, and Z, are positive real parameters:
Z.eRst, Z,eRy", where we use the notation R, for the set
of non-negative real numbers.

(ii) If there exists some X,€R(||xy|| < ) so that
V:(xo) =0, then ||VV;(x)]|(x = x,) =0, and the Hessian
matrix (VVV,(x))(x = X,) has either only negative or only
positive eigenvalues, for bothi=1and i = 2.

(iii) sgn (¥,(x)) = sgn(V,(x)), for all xe'R.

We include a further assumption that will allow us to
advance farther in the analytical derivation (even though it
is not essential to develop the method).

(iv) V;(x) and V,(x) are homogeneous functions of
degree N, and N,, respectively.

Note that in Sec. IV the changes in the formulation,
required by a relaxation in some of above conditions, are
discussed briefly.

In order to define the level sets (and their boundaries)
corresponding to a given eigenstate, the spectrum of
H(Z,,Z,) must fulfill certain properties under continuous
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variation of Z, and Z,. Namely, we assume the following
two properties.

(v) There exists a nonempty set D, DCR," XR,", so
that for all (Z,,Z,)eD, H(Z,,Z,) has a nonempty set of dis-
crete eigenstates.

(vi) DNRg" X {0} #D and DN{0} X R,;" #D, where @
is the empty set. That is, the Hamiltonians H(Z,,0) and
H(0,Z,) have spectra that can be obtained from that of
H(Z,,Z,) in the limit Z, -0 and Z, -0, respectively. [ No-
tice that (0,0)¢D.] In order to simplify the analysis that
follows, we will assume the discrete spectrum to be nonde-
generate.

The above properties (iii), (v), and (vi) guarantee the
existence of a discrete spectrum

{E.(Z,,Z,), m=0,1,..,N; N>0}
over variations of both Z, and Z, within a certain range.
Furthermore, according to the HFT, these eigenvalues are
monotonic functions of both Z; and Z,:

JE,(Z,,Z,)
(——a—zj—z—)z2 = {(Vl)m }(szz) 4

JE  (Z,,Z,)
(=52), -

Here m must be understood as the set of good quantum
numbers necessary to specify completely the spectrum. In
the above equations, and in what follows, the symbol
{---}z,z, stands for the expectation values calculated by
integrating with an eigenstate ¢, (Z,,Z,;x) of Hamiltonian
(1) in the integrand, whereas the notation (V,},, stands for

<¢m (Z,2,x) | V(x) |¢m (Z,,Z,x) >,

withi=1or2.

We are now in the position to introduce the concept of
constant energy trajectory (CET). A CET is simply a con-
tinuous curve defined on D, so that every point on it repre-
sents a pair of values (Z {,Z ;) for which the mth eigenvalue
of H(Z {,Z }) has a fixed numerical value. This curve “con-
nects” the spectra of H(Z,,0) and H(0,Z,).?'-?

In order to define the CET we proceed as follows: let
(Z,,0) and (0,Z ) be two points in D, so that

E,(Z,0) =E, (0,Z;). (3)

It is easily shown that, according to the assumptions above
for the spectrum and the potential, such a number Z | exists
for a given Z,,. Using the homogeneity properties of the po-
tential and the Symanzik scaling,?* we deduce the unitary
equivalences of Hamiltonians,

(2)

H(Z,0)=(Z)¥™M*2H(1,0),
H(0,Z,) =(Z,)*™+?H(0,1),
which lead us to the result

Z,= {Em (1,0)/E,, (0,1)}(1\5 —+—2)/2(ZO)(N2+2)/(N, +2)
(5

Observe that, as a result of the monotonicity of the energy as
a function of Z, and Z,, there exists a single value

Z*={E(1,0)/E(0,1) }M: + DN+ /2N — W)
sothat Z, =2/ =Z*, as long as N,#N,. If N, = N,, we

(4a)
(4b)
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get Z, = Z; for any Z,. In the general case of N, #XN, the
condition to have Z, > Z ; will depend on whether Z, > Z *
or Z, < Z *, and on the ratio between the mth eigenvalues of
the Hamiltonians H(1,0) and H(0,1). This latter property
depends, in turn, on the values of N, and N,.

We now introduce the CET by means of a function
S [0,Z,]1-[0,Z;] defined according to the following

properties:

limf, (Z) =25 lim f,(Z;) =0, (6a)
Z,i0 Z1Z,
E, (Zy, fu(Z)) =E,, (Zo,0), forall Z,e(0,Z,).  (6b)

It is easily proved from the monotonicity properties of the
energy, and the existence of Z} for every Z, that
Z, =f,,(Z,) is a bijective function.

We can introduce now a level set F,, (Z,) on D as

F,(Zy) ={(Z,,2,)eD: E,(Z,,Z,)>E,(Z,0)}, (T)
for which the CET f,, (Z,) above is the boundary'®:
G, (Zy) ={(Z,Z,)eD: Z,=f,(Z))}. (8)

If E,(Z,,Z,)>E, (Z,0), the condition to have either
Z,>f.(Z) or Z,<f,, (Z,) depends on the potential. For
instance, if V;(x) <0, and N; > — 2, i = 1,2, it follows that
for all (Z,,Z,)€F, (Z,), Z,<f,,(Z,). This is typically the
case of one-electron diatomic molecules [ Coulombic poten-
tials in Eq. (1)].1%*!

The CET f,,(Z,) is in general an unknown function.
However, we can determine some of its basic properties,
which will turn out to be useful for deriving approximate
expressions for the eigenvalues. It is worth commenting that
the main properties of the level sets (and their boundaries)
can be deduced from the use of the variational theorem to
approximate the eigenvalues.'® However, we shall show here
that the analysis of the exact CET’s can lead to nonvaria-
tional approximations to the eigenenergies, with the same
analytic structure that is expected for the exact ones.

Formally, the function f,, (Z,) can be built from expec-
tation values of the potential. To that purpose let us restrict
our discussion to the eigenvalue problem of the operator
H(Z,,f.(Z))) [where f,, (Z,) is not yet determined]. Ac-
cording to Eqgs. (6), its expectation value with
Yl frn (Z,);x) is a constant for all Z,€[0,Z,]:

a{(H(vam (Zl))>m}(z,.fm(2,))
0z,
The HFT and Eq. (9) give us the expression for the deriva-
tive of function f,, (Z,), with respect to Z:
F(Z) = =V D)/ VI mbiz, fizn <O
for all Z,€[0,Z,]. (10)

Using Eq. (6) we can integrate Eq. (10). Consequently, for
a given pair of numbers Z,,Z,(0,Z,), there exists a single
real value Z, so that (Z,,Z,) is in G,, (Z,); this is given by

18,19

=0. (9

Z((Vy)
z:m(2)=f{ ""} d. 11
2 =In(Z, z, LAV2) o Jisisinton) g ah
2 (V)
=z'—J [-—‘-”-'-] ds. (12)
N S N7 Y PP :
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Equations (11) and (12) provide an integral equation for
the CET. Naturally, for nontrivial problems these equations
cannot be solved exactly to obtain f,,(Z,). However, we
shall see below that the integral representation of £, (Z,)
can be used to obtain approximate expressions for it. In turn,
we will discuss how approximations (bounds) to the exact
Jm (Z,) can lead to approximations (bounds) to the eigen-
values.

It is relevant to our discussion below to determine the
sign of the second derivative of the function f,,. It can be
determined easily using again the HFT. We start from the
equality

9°E,(Z\,f.(Z)))
9z2

=0=2(a¢m aH(Zl’fm (Zl)) ¢m>
9z, 4z,
d*H(Z,f.(Z '
+{< (1f2<1>))} o
9z m ) (@0 fz)
Upon expanding the Hamiltonian in Taylor series,
H(Z,+6Z,,f.(Z,+6Z)))
AH\(Z,, f..(Z))
~HZ S Z0) 462,22 E0) 4 052,59,
' (14)

the standard nondegenerate RSPT up to first order allows us
to compute the derivative of the wave function in Eq. (13):

a'/’m(zl’fm (Zl)) — [E —E ]._1
az: s=0 (s5m) " ’
SH(Z, f.(Z})
X('/’m ——-(—3;‘_“& ¢s>¢s'
1

(15)

Summation in Eq. (15) must be understood as running over
all states with the same symmetry as ¥,,, including both
discrete and continuum states.

Introducing (15) in (13), and noticing the relationship
between the second partial derivative of the Hamiltonian
and the second derivative of the function f,, (Z,), we get

@) =2tz szn] 3

s=0 {s9m)

dH(Z,.f,.(Z)) I'/’) 2

az,
This equation reveals that for the Jowest state in every mani-
fold of eigenstates of H with distinct symmetry (say
m = M), the following equality holds:

sgn( f 3 (Z,)) = sgn(V,(x)), 17

according to the assumptions already commented about the
sign of the potential. Observe that Eq. (17) establishes, for
example, the concavity from below of the boundaries of level
sets of Hamiltonians with Coulombic potentials.!®2!

The above results for the first and second derivatives of
the function £, (Z,) lead us to an important conclusion in

[E. —E.]7"

e
(16)
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terms of the ratio of expectation values of ¥, and V,. This
result is condensed into the following lemma.

Lemma I: Let M be a quantum number or a set of quan-
tum numbers standing for the lowest eigenstate of a given
manifold of eigenstates of the Hamiltonian (1), defined ac-
cording to properties (i)—(vi). Then (a) if V,(x) <0, then

maX{( VI)M/< V2)M}(Z,,fM(Z,))

= {<V1)M/< V2>M}(z.,,o> = “fu (Z£y);
and (b) if V,(x) >0, then
min{<V1)M/(Vz)M}(z,,fM(z,y)

= {(Vl)M/<V2)M}(Zo,O) = _fM (Z).

Lemma 1 is one of the results we need to be able to derive
approximations to the eigenvalues from the integral repre-
sentation to the CET’s [Eqgs. (11) and (12)]. Our strategy
can be stated as follows: suppose, without loss of generality,
that the problem of H(Z,,0) can be solved exactly, i.e., all its
eigenvalues, as well as all expectation values involving its
eigenfunctions can be evaluated in a closed form. According-
ly, even though Eq. (11) cannot be solved exactly, a bound
can be given for the integral by using the expectation values
computed with the eigenfunctions of H(Z,,0). Lemma 1
gives us some bounds for the integrand according to the po-
tential. However, to derive approximations to the eigenval-
ues we need a further result,

Using the VT and the normalization of the eigenfunc-
tions of H(Z,,0) for all Z, it is simple to prove the following
scaling law for them:

Y, (Z,0ix) = a~ V2, (Zya® + Y, 0;x/a).
We use Eq. (18) to prove the following lemma.
Lemma 2:
|4 V. -
gn[ H(V ) /¢ 2)".}(20.0) ] _ sgn[ N, — N, ]
9z, 2+ N,
Proof: Invoking the scaling law (18) and the homogene-

ity properties of the potential, and choosing the scale factor
asa=2Z, V3+M weget

(18)

{(Vl)m/(V2)m}(Zo,0) = (Zo)(Nz_N|)/(2+Nl)C’ (198)
where

C= {< Vl)m/( V2>rn}(1,0) y
from which the lemma follows.

(19b)

We are now in the position to use Eq. (11) to provide a
first simple analytic upper bound to the eigenvalues. Let us
consider, for instance, that both ¥, and V, are positive. Here,
and in following sections, we confine ourselves to this case,
to which the formalism has not been applied up till now. The
case of both V, and V, negative has been the subject of a
related analysis (in the particular case of diatomic mole-
cules), even though not following the present formula-
tion.?>?* The extension to negative potentials is immediate.

According to Lemma 1, from Eq. (11) we deduce

[ Vz(x) >0]
EM (Zl,Zz) == EM (Z()’O)

=23 (Zy - Z){V))u/ V)l zo0 - (20)
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Notice that, even though the right-hand side of the inequali-
ty (20) can be computed in principle for any value of Z,, the
actual value of Z, is unknown, Our goal in the rest of this
section is to approximate E,, (Z,,Z,) by using an approxi-
mate Z,,.

Let us define a new Z 3 so that the equality is reached in
(20):

Z,= (Z§—-Z;){(V;)M/(Vz)M}(zm), (21)
that is, the new value Z ¥ satisfies
(Z3 —Z){V )/ V2>M}(28'.0)

>(Zo— ZNAV ) s/ Vi asdzoo - (22)

Let us consider now the class of potentials V,(x) for which
the Hamiltonian H(0,Z,) has eigenvalues that are monoto-
nously increasing functions of Z,, ie, 24 N,>0
[V,(x) >0]. In this case, Lemma 2 assures us thatif ¥, >N,
then inequality (22) implies Z % > Z,,. As a consequence we
get

U(ZI’ZZ) = EM (Z:,O)

= (Z(?)z/(N‘+2)EM(1’0)>EM(ZpZz)» (23)

Equation (23) holds also if ¥,(x) <0. Our conclusion can
be summarized in a theorem.

Theorem 1: Let H be a Hamiltonian satisfying condi-
tions (i)—(vi), as well as the conditions 2 4+ ¥, >0 and
N,> N, for the potential. Let M be the quantum number of
the lowest state in a given manifold of eigenstates of H with
distinct symmetry. Then, the function E,,(Z %,0), with Z }
the only real positive root of Eq. (21), is an upper bound to
the eigenvalue E,,(Z,,Z,) for all (Z,,Z,)eD.

This theorem provides the simplest example of a class of
approximations to eigenvalues that will be discussed in this
paper (see Sec. III).

As discussed previously, we have considered the Hamil-
tonian H(Z %,0) to be a reference Hamiltonian, in the sense
that its Schridinger equation can be solved exactly. In this
context its eigenfunctions ¥, (Z ¥,0;x) are used to approxi-
mate the eigenvalues of H(Z,,Z,), which resembles the
SVM method.'®!* Notice, however, that we have not pro-
ceeded variationally: neither is £, (Z %,0) an expectation
value of H(Z,Z,), nor is Z * obtained by means of variation-
al optimization.

It would not be surprising to obtain an upper bound to
E\(Z,,Z,) if we consider that ¢,,(Z ¥,0;x) is used some-
how as a “trial function.” However, in the context of the
SVM the approximate energy has the correct analytic behav-
ior (as fixed by the HFT and VT’s) only when the parameter
is optimized variationally. This is not our case; nonetheless,
we will show that the CET method leads, indeed, to nonvar-
iational approximations with the appropriate analytic struc-
ture.

Theorem 2: The function E, (Z *,0), with Z ¥ the only
real positive solution of Eq. (21), is a solution of the follow-
ing differential equation:

2 BZ, Z, 2 aZZ z,
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which is the same equation derived after combining the VT
and HFT for the solutions of the Hamiltonian (1).

Proof: We first show the scaling law that Z § satisfies
with Z, and Z,. Using (19), we rewrite Eq. (21) as follows:

Z,= (Z§—Z,)(Z§H ™ N/e+NC, (25)

Introducing now the scaling Z& =aZ*, and Z, =aZ

into (25), and choosing the scale factor as
a= (ZZ)(2+N1)/(2+N2)’ we get
L= (Z§* —Z))(Zgm W Nesm, (26)

which shows that Z ¥, as a function of Z, and Z,, satisfies
Z3¥Z,.Z,)
— (Zz) 2+ N)/Q2+ N;)Z(agr(z1 (Zz) -2+ N/ 2+ N’),l).

2n

Using Eq. (4a), we deduce from (27) that our upper bound

E,(Z%0) = U(Z,,Z,) satisfies the equality

U(szz) — (22)2/(2 + Ny) U(Zl (Zz) - 2+ N2+ Nz)’ 1)'
(28)

Equation (28) is the correct scaling law expected for the

exact eigenvalue according to the standard Symanzik scal-

ing.?* From (28) one gets

Zl(w) = Z,(Z,) e N 9U(b,1) ;

z,

9z, b
(29a)

5 (aU(zl,zz) )
| ———==
822 z,
- 2
2+ N,

(ZZ)Z/(2+N2)U(b’1)

2+ N, Z,(Z,) ~ N+ au(b,1) , (29b)
24N, b

where b = Z,(Z,) ~ @+ M/ 2+ Combining Egs. (29) we
complete the proof.

Theorem 2 establishes the fact that the upper bound
possesses the correct analytic behavior with the real param-
eters contained in the Hamiltonian. In other words, it satis-
fies “simultaneously’’ the VT and HFT through a nonvaria-
tional approach. It is worth commenting that this result
holds for all quantum numbers m, not only M, even though
the bound (23) might not be true.

The similarity between U(Z,,Z,) and the exact eigen-
values can be demonstrated in a more detailed way if we
compute the Taylor expansion of the former in power series
of Z, If we write the parameter Z% as Z3=Z

+ZPZ,+ZP Z3 + -+, introduce it into (21), and
collect the coefficients premultiplying each power of Z,, we
can obtain from Eq. (23) the following expansion:

U(szz) zEm (leo) + ZzAz
+Z2{(N, —N,)A%/E, (Z,,0)
— N4,/ (2+ N} +0(Z3),

(30)

where A, = {(¥,),, }z,0, - Clearly, this expansion is correct
up to the first order.

We can compare the above result with the one obtained
from the variational method (SVM). To this end we consid-
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er a trial function that is an eigenfunction of H(z,0). The
function is ¢, (2,0;x), where the real number z will be ob-
tained variationally. Invoking the VT for H(z,0), a simple
calculation shows that the variational functional is given by

€(Z,,2,)
= (N1/2){<V]>m}(l,0)q_2
+Zl{(V1)m}(1,o)qN'+Zz{(V2>m}(1,0)qN’,

where g =z~ /2 + ™) The parameter ¢ takes its optimum
value in the stationary condition

(31)

9e(Z,,Z,)
dq
that is,
1=Z,(g*)V*?+ Z,(N,/Ny)

X{<Vl>m/( Vz)m}(l,o) (q*)N2+2-

(g=4g%) =0;

(32)

Substitution of ¢* into (31) gives an approximation to the
eigenvalues that satisfies both VT and HFT, as is well
known. Furthermore, its expansion in a power series of Z,
leads to the following result [notation the same as in Eq.
30)1:

€(Z,Z,) =E,(Z,0) +Z,

—Z3NYA}/AN\E, (Z,,0) + O(Z3),
(33)

which is correct up to first order. Notice that the second-
order term is not only incorrect but it also differs from the
result (30).

Let us summarize the conclusion from the above analy-
sis: the elementary bound (23), obtained from the properties
of the boundaries of the level sets in the parameter space D,
differs from the SVM result. Both procedures employ the
same input information, that is, an eigenfunction of the “ref-
erence” Hamiltonian H(Z,,0). However, in the case of the
SVM this function is optimized variationally, whereas in the
CET method it is not. Despite this difference, both approxi-
mations share the following properties: (1) all the eigenval-
ues are described by approximate expressions satisfying the
HFT-VT differential equation, which assures the correct de-
pendence with all the parameters in the Hamiltonian; (2)
the approximate expressions reproduce the RSPT in power
series of Z, up to first order; and (3) both give rigorous
upper bounds to the energies of the lowest eigenstate of a
manifold with distinct symmetry.

Such profound coincidence between a variational and a
simple nonvariational method has not been noticed before,
as far as we know.

From the numerical point of view, the bounds derived in
this section [Egs. (21) and (23)] are not better than the
variational ones. This is not surprising, since the starting
bound (20) is the most elementary one that can be found for
the integral representation of the CET function f,, (Z,). As
shown in the next section, other expressions obtained from
Eq. (11) allow one to improve the accuracy of the approxi-
mation, without losing any of the fundamental properties
mentioned above.
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lil. APPROXIMATE EXPRESSIONS FOR EIGENVALUES:
GENERAL ANHARMONIC OSCILLATORS

In this section we discuss the derivation of a family of
approximate expressions for eigenvalues of parameter-de-
pendent systems, using the main ideas displayed in the pre-
vious section.

For the sake of succinctness we consider here a concrete
example: the general anharmonic oscillator. This is a one-
dimensional model (x = x), given by

Vix) =x% V,(x)=x> n=123,. . (34)

The potential defined by (34), as well as the spectrum of its
corresponding Hamiltonian, satisfies the required properties
discussed in the previous section. Of course, thecase n = 1 is
trivial. The case n>2 has no analytical solution, and it has
been the subject of numerous discussions in the context of
approximate methods (see, for instance, Refs. 5 and 25-28,
and others quoted therein). Moreover, the model is a useful
one in molecular spectroscopy (see, for instance, Refs. 29—
32) as well as in field theory (for example, Refs. 33 and 34).
In our case we are only concerned here with the derivation of
extremely simple expressions for the eigenvalues, derived
from basic principles assuring them the correct analytical
behavior with both Z, and Z,. It is worth reiterating that our
aim is not to compute eigenvalues with large precision. On
the contrary, we want to show how an approach different
from the variational method can be useful to fix the overall
main analytical structure of the eigenvalues, as functions of
the physical parameters defining the system. Furthermore,
we are more interested in how the expressions obtained can
be improved by introducing complementary information
about the system, once the basic qualitative behavior of the
eigenvalues is guaranteed.

For the system (1) with the potential (34), the condi-
tion defining the CET is

E, (Z,0) =E, (Z,f.(Z)) = Cm + NZ 7,
Z,€[0,Z,). (35)

According to Eq. (11), the function f,, is represented by the
following integral equation:

Zof {42
Z,=£.(Z,) =f [ <x2">,.. } ds.
2, 1{x*™) m b fmto)

In Sec. IT we analyzed the case of bounding the integral (36)
by its minimum value. To obtain better approximations toit,
and consequently to the eigenvalues, we propose the follow-
ing strategy.

(i) The expectation values in (10) are approximated
variationally, using the SVM with a ¢,, (z,0;x) wave func-
tion.

(ii) These expectation values are then used as approxi-
mations to the integrand in Eq. (36). This is achieved by
determining the optimum z* under a double condition: the
variational minimum is satisfied and the variational energy
is made equal to the value of energy defining the CET
[6(Z,,Z,) = 2m + 1DZ ).

(iii) Finally the integral obtained is used to recompute
approximations to the eigenvalues E,, (Z,,Z,).

(36)

Proceeding as in Sec. II, we compute the variational

124 J. Math. Phys., Vol. 28, No. 1, January 1988

expectation value of a Hamiltonian describing a generic
point (s, f,, (s)) on the CET [cf. Eq. (31)]:

€ls, £, () =[(2m + 1)/2]2"?

+[(2m + 1)/2])s/2"% 4 C, ,, £, ()2~ ™2,
(37)

where C,,, stands for the expectation value {(x**),,},,,,

computed for the mth eigenstate of H(1,0). The first of these
elements are*

Cim=02m+1)/2; C,,, =1+ 2m+1)%}; etc.

(38)

The variational condition gives us the optimum z* as a real
positive root of the equation

(z#)l/2 — s/(z*)llz

+2nC,,, [,,($)(z*) "/ 2m +1). (39)

On the other hand, the condition for belonging to the CET
leads us to the following equality:

ZY=s/()"

+ (n+ G, [ (5)(2*) =/ (2m 4+ 1).

(40)
Combining Eqgs. (39) and (40) we deduce a relationship
between the variationally optimized parameter z* and the
parameters Z, and s. This equation (a quadratic equation)
must be satisfied in order to have a variational approxima-
tion to the energy lying on the required CET. A single root of
the equation verifies the correct properties for the function
[, (8), and this gives us

(' =[n/(n+1)]1Z}?

X{1 4+ [1 — (n® — 1)s/n*Z,]"%}.  (41)
On the other hand, using Eqs. (18) and (19) (and the defini-

tion of C, ), we can now approximate the integrand in Eq.
(36) with the variational wave function:

{746 1 s 1 o)
z{(x2>m/(x2n>m}(z°,o)
=[@2m+ 1)(z*)"~ V%] /2C, ., (42)

where s, Z,, and z* are linked as shown in (41). Introducing
(42) into (36), and using (41), we obtain

2m+1[ n
2C,,, ln+1

Z, 2 _ 1/2)n—1
xf {1+[1———(” - l)s] } ds.
z, n“Z,

Equation (43) is our starting point to deduce a family of
approximate expressions for the eigenvalues. For a given
pair (Z,,Z,), Eq. (43) is an equality from which Z, can be
obtained, and from it an approximation to the eigenvalues.

Of course, the solution of Eq. (43) will lead to the SVM
result. That is, in this case the eigenvalues E,, (Z,,Z,) are
approximated by the function (2m + 1)Z}/?, which coin-
cides with the result of Egs. (31) and (32). We denote this
approximation to the eigenvalues by U,(Z,,Z,).

New expressions for the eigenvalues can be deduced by
bounding the SVM result from above and below. These ex-

Zz:

1Z( /2
n—
]

(43)
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pressions have the same analytic behavior as the SVM eigen-
value, and, as we shall see, may lead to more accurate ap-
proximations to the exact result.

(a) Upper bounds: A bound for the integral in Eq. (43)
can be obtained as follows:

Zy 2 1/2yn —1
(n —-l)s] ]
1 =Ds d
L.[1+[ 7z, g

n—1
>[n_:1] (Z,—-Z)).

This result and Eq. (43) imply that the value of Z, computed
as a root of the equation,

Z,=[2m+1)/2C,, |1Z& V2, - Z,),  (45)
will be larger than the corresponding root of Eq. (43)
(of course, for the same values of #n, m, Z,, and Z,). In
other words, the approximation to the -eigenvalues
U,(Z,,Z,) = (2m + 1)Z }/?, with Z, obtained from (45),
satisfies the property

U,(Z,,2,)>U,(2,,2,). (46)

It is immediate to see that U,(Z,,Z,) is simply the approxi-
mation to the eigenvalues we constructed in Sec. II [Egs.
(21) and (23)]. As we know, U,(Z,Z,) possesses the cor-
rect analytic structure. However, it also presents a very ap-
pealing feature. In the case of the anharmonic oscillators
U,(Z,,Z,) gives only an upper bound to the energy of the
ground and first excited states (m = 0,1) for all Z, and Z,.
For other states, U, (Z,,Z,) crosses the exact eigenvalue for
some unknown Z, and Z,. On the other hand, we find nu-
merically that our approximation U,(Z,,Z,) is an upper
bound for all m.

(b) Lower bounds: The following bound holds for the
integral in Eq. (43) for all quantum numbers:

Zo 2 172Yyn—1
(n —l)s] }
1 11— - d.
fz.[ +[ n’zZ, d

2 _ 1/21n—1
<{1+[1_'(nn_221)£l]] (Z,—2Z). (47)
0

(44)

This result implies that the value of Z; obtained from the
equation

Z,=[2m+1)/2C,, |[n/(n+ 1)]" !

xz(()n— l)/Z(Zo _ Zl)

X{1+ [1= (n* — DNZ/n*Z,)"?}"~! (48)
will be smaller than the one obtained from Eq. (43). That is,
the approximation to the eigenvalues U;(Z,,Z,)

= (2m + 1)Z}?, with Z, computed from (49), satisfies
the following inequality:
U;(Z,,Z2,)<U,(Z,,2,). (49)
A simple analysis of Eq. (48) shows that U,(Z,,Z,) satisfies
also the correct scaling law (28), i.e., it possesses the same
qualitative dependence with Z, and Z, as the exact eigenval-
ues, as well as U,(Z,,Z,) and U,(Z,,Z,). 1t is clear that
there also exists a large set of reasonable approximations to
theintegral in Eq. (48) that could lead to the same analytical
result. For instance, replacing the integrand by its mean val-
ue would lead to the same scaling law.
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TABLE 1. Approximations to the ground state energy of the anharmonic
quartic oscillator: H = p* + x> + Zx*.

z, U(1,Z)* Uy(1,Z,)* Us(1L,Z,)° UlL,Z,)* Eu(1,Z,)

10~*  1.0007489 1.0007492 1.0007486 1.0007487 1.000 7487
107! 1066204 1.067923 1.064709 1.0653856 1.065 2855
1 1.403 323 1431127 1.383407 1.3927179 1.392 3516
10 2488624 2.601244 2413049 2.4494608 2.449 1741
10° 2332033 24.67564 2242468  22.861 6419 22.861 6089

*Z % Z, from Eq. (43) (m = 0) (SVM approximation).
bZ 2. Z, from Eq. (45) (m = 0) (see also Sec. II).
°Z % Z, from Eq. (48) (m =0).

4Z ¥% Z, from Eqs. (50) and (51) (m =0).

°Exact results.>®

Furthermore, it is easily proved that U,(Z,,Z,) also
gives rise to the correct RSPT coefficient up to first order.
Moreover, we find numerically that U,(Z,,Z,) satisfies not
only (50), but it is also a lower bound to the exact eigenval-
ues for all quantum numbers and values of the parameters in
the Hamiltonian. We have not been able to obtain a rigorous
proof for this last numerical observation. The function
U,(Z,,Z,) is an extremely simple lower bound; however, its
analytical similarity with the exact result makes it attractive
and useful.

Tables I and II show, respectively, the numerical results
obtained for the ground (m = 0) and second excited state
(m = 2) of the quartic anharmonic oscillator (n =2) in a
wide range of Z, values (Z, = 1). We have chosen m =0
and m = 2 to compare two very different situations. In the
first case the SVM gives an upper bound for the ground state
energy for all Z,, but it crosses the exact result for some Z, in
the case of m = 2.

For the ground state (Table I) we notice that the lower
bound U,(Z,,Z,) is closer to the exact result® than the vari-
ational result. Although the upper bound is distant, it shows
an interesting feature: both upper and lower bounds have an
almost constant relative deviation from the exact result for
Z, not too small. As shown below, one can take advantage of
this fact.

For the second excited state (Table IT) the variational
result shows a fortuitous good agreement with the exact re-
sult, even though the deviation from it is not uniform. Once

TABLE II. Approximations to the energy of second excited state of the
anharmonic quartic oscillator: H = p? + x* 4 Zx*.

z, Ui(1,Z,)" Ux(1,2,)° Uy(1,Zp)° UldL,Z,)*  E(1,Z)°

1077 50097123 5009722 5.009703 5.0097117 5.009 7119
10~ 5748005 5781986 5.721008 5.747 6354 5.747 9593
1 8.647038 8923591 8456671 8.6542276 8.6550500
10 16.602308 17.447390 16.039486 16.6353495 16.6359215

10 160.283 207 169.609 719 154.120 230 160.685 8479160.685 9126

*5Z 3% Z, from Eq. (43) (m = 2) (SVM approximation).
®5Z % Z, from Eq. (45) (m = 2) (see also Sec. II).

°5Z Y% Z,from Eq. (48) (m =2).

45Z)* Z, from Egs. (50) and (51) (m =2).

¢Exact results.®

G. A. Arteca and P. G. Mezey 125



again, the lower bound is closer to the exact eigenvalues than
the upper bound. It is noteworthy that the relative deviation
tends to be again somewhat systematic.

The above numerical results suggest that one can use the
approximate expressions U, (Z,,Z,), i=1,2,3, as func-
tional representations for the eigenvalues in which one could
introduce information provided by some other sources. This
has been done previously within a context similar to the
SVM.*3637 Here we illustrate briefly how this can be ac-
complished considering the function U,(Z,,Z,), for which
the numerical results were better, with the limit of the eigen-
values in the purely anharmonic regime.

Let us suppose that the value of E,, (0,1) is known for an
eigenstate of an anharmonic oscillator. We can slightly
modify Eq. (48) in order to compute a new value of Z,, so
that the approximation to the eigenvalues obtained from it
satisfies the following properties: (i) the scaling law is not
affected; (ii) the first-order RSPT coefficient is predicted
correctly (this coefficient coincides with C,, ,, [cf. Eq. (38)])
and (iii) the correct limit of the eigenvalues in the purely
anharmonic regime is also predicted properly [in our case,
this implies that

(Z,) - +N2)U3(0»Zz) =FE, (0,1) ] .
A simple way to reach the above goals is to rewrite Eq.
(49) as follows:
k'Zy=[(2m+1)/2C,, ][n/(n+ 1)]""!
XZE P2y —Zy)
X{l +k[1— (= 1)Z/n*Z,1"?} =1 (50)

The function Z, computed from (50) satisfies the expected
scaling law with respect to Z; and Z,. This fact guarantees
that the first requirement above is met. The constants k and
k ' must then be determined so that the other two conditions
are satisfied. A simple computation shows that

k=(2,, —n)/(1-P,,), (51a)
k'=Z"n+ 1)~ "[(P,,, —nP,,}/(1 =P, )]},
(51b)
where
P, =nE, (0,1)n+D/(n=Dz —n2tn=1)

X [2Cn,m (2m + l)n] 171 —n)’

After solving Eq. (50) for Z,, we find a new approximation
to the eigenvalues, U,(Z,,Z,) = (2m + 1)Z }*

We used the results in Ref. 38 for E,(0,1) and E,(0,1)
to compute U,(Z,,Z,) for the quartic anharmonic oscilla-
tor. The corresponding numerical values appear in the fifth
column of Tables I and IL It is worth noticing that, even
though we have only introduced as a new feature the correct
correlation between the spectra of H(0,Z,) and H(Z,,0),
the accuracy of the approximation is remarkable. In fact, as
far as we know, it is one of the simplest and most accurate
expressions available for the eigenvalues of the anharmonic
oscillators.

These results are a clear illustration of the way in which
the CET method can be employed to provide new simple
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analytical approximations to eigenvalues. It shows that the
variational condition over a trial function is unnecessary to
satisfy the HFT-VT differential equation, and the RSPT se-
ries up to first order, as long as the function is used to repre-
sent approximately the constant energy trajectory.

It is worth commenting that other nonvariational tech-
niques (such as the JWKB semiclassical method) may lead
to approximations to the eigenvalues also satisfying an equa-
tion similar to (24)."” However, unlike the CET approach,
they do not mimic so well the exact eigenvalue, because they
fail at predicting (from construction) the correct coefficient
at first-order RSPT.

IV. FURTHER COMMENTS AND CONCLUSIONS

In this section we shall discuss briefly some problems
connected to the extension of the method. Some of the prop-
erties initially required for the potential in Sec. II can be
relaxed to apply the CET method in a more general frame-
work. However, there are some very strong conditions that
cannot be removed if one is to apply the method in this pres-
ent formulation. These conditions make it necessary to in-
troduce appropriate modifications in the procedure in order
to apply it to some interesting systems.

Let us suppose for instance that the Hamiltonian of in-
terest is given by

H(ZI,Z2) _ - A +ZIV1(X) +22V2(x) + V3(X),
(52)

where V;(x) is some function independent from Z, and Z,
(positive real parameters). Suppose that the Hamiltonians
H(Z,,0) and H(0,Z,) have discrete spectra for all Z,eD,
and Z,€D,, respectively. In this case condition (iii) (Sec. II)
for the potential is no longer a necessary condition to con-
nect both spectra. However, it can be replaced by the follow-
ing one:

min min[Z,V,(x) + V5(x)]

ZxeD, {x}

<max max[Z,V,(x) + V5(x)].

Z,eD, {x}

(53)

Inequality (53) is a necessary condition, even though a not
very strong one. With this small extension the CET method
can be applied paralleling the derivation in previous sec-
tions. The model (52) includes some systems of interest as
the electronic Hamiltonian (in the Born—-Oppenheimer ap-
proximation) for many-electron diatomic molecules. In this
case, V,(x) represents the electron—electron repulsion term.
These problems have been discussed in a more restricted
framework in Refs. 22 and 23.

Another case of interest is given by the family of Hamil-
tonians containing two different classes of parameters. For
instance, consider the case of H(Z,,Z,) given by

H(Z,,Z,) = — A+ Z\V\(x) + Z,V,(x51) + Va(x),
(54)

containing a linear dependence on Z, and Z,, and a nonlin-
ear dependence in a set of parameters r. For these problems it
is sometimes more interesting to describe the behavior of the
eigenvalues as functions of r, for fixed values of Z, and Z,.
The constant energy trajectories should be here studied as
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functions of r; for a given pair (Z,,Z,) there can exist, in
general, infinitely many CET’s connecting the spectra of
H(Z,,0) and H(0,Z,). Some results concerning the proper-
ties of these particular CET’s are present in previous refer-
ences.”' 2

We notice here that there exist certain systems depend-
ing on two parameters, as in (1), for which the CET method
cannot be applied in the present formulation. For example, if
condition (iili) (Sec. II) is not fulfilled [i.e.,
sgn(V;(x))#sgn(¥,(x))], then the two limiting spectra can-
not be joined by a CET. Examples of problems with these
characteristics include the Zeeman effect on hydrogen (with
a uniform static magnetic field)*® and the “quarkonium”
model potential.**~*2 In the first case the relevant part of the
first Hamiltonian is given by

Vix) = — Vx|, Va(x)=(x}+x3),
X = (X;,%5,%3), (55)

when the field is aligned in the x; direction, whereas in the
last case we have the same ¥ (x), but

V,(x) = |x||", »n>O0.

Nevertheless, it is still possible to define CET’s for these
systems, if the condition to have a bounded curve
[f(Z,)<Z;, for Z,<Z,] is removed. In this case, Eqs. (6)
will no longer be valid. These generalized unbounded CET’s
can be used again to provide some elementary bounds for the
eigenvalues. This problem will be discussed elsewhere in a
forthcoming paper.
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Helicity eigenstates of a relativistic spin-0 and spin-} constituent bound
by minimal electrodynamics: Zero orbital angular momentum, zero

four-momentum solutions
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Zero four-momentum, helicity eigenstates of the Bethe—Salpeter equation are found for a
composite system consisting of a charged, spin-0 constituent and a charged, spin-} constituent
bound by minimal electrodynamics. The form of the Bethe-Salpeter equation used to describe
the bound state includes the contributions from both single photon exchange (ladder
approximation) and the “seagull” diagram. Attention is restricted to zero orbital angular
momentum states since these appear to be the most interesting physically.

L. INTRODUCTION

Experimentally the electron-muon mass ratio is numeri-
cally approximately two-thirds of the electromagnetic fine
structure constant. If this is not a coincidence, and charged
leptons are composite, electromagnetism must play an im-
portant role in binding the constituents. We are therefore
motivated to consider two or possibly three constituents
bound by electrodynamics.

As a first step toward determining the consequences of
such a model, a bound state consisting of a charged particle
orbiting a stationary (infinitely massive) charged, magnetic
dipole was studied in two space dimensions using the Schré-
dinger equation.’ Three encourgaging results were obtained:
(1) A bound state with orbital angular momentum/ = Ocan
occur that has a radius smaller than the present experimen-
tal limit for the electron. (2) No strongly bound (low mass)
states occur except for orbital angular momentum /= 0.
Thus if one of the constitutents has spin-0 and the other has
spin-, all low-lying bound states would have spin-} as re-
quired by the charged lepton mass spectrum. But since an
electromagnetic transition between two / = 0 states is a for-
bidden transition,” a third encouraging result follows. (3)
The model provides a natural explanation for the absence of
the decay p—e -+ 7. Because of the results of this prelimi-
nary calculation, attention was restricted to a two-body
model of charged leptons consisting of a charged, spin-0 bo-
son and a charged, spin-} fermion interacting electromagne-
tically.

A second preliminary calculation® was performed using
the Klein-Gordon equation to describe the constituent bo-
son moving in two space dimensions under the influence of
the electromagnetic field of an infinitely massive fermion.
Although the “sizes” of bound states were not determined,
the absence of strongly bound states except for / =0 re-
mained. An important new result was the qualitative behav-
ior of the energy spectrum. (4) The energy gaps between
successively higher bound states can increase in size. This
very unusual bound-state pattern is qualitatively similar to
the charged lepton mass spectrum. However, because the
Klein-Gordon equation was used, the rate of increase be-
tween the energies of successive bound states is larger than
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that of the observed mass spectrum. On the other hand, had
the Dirac equation been employed, the gaps between succes-
sive bound-state energy levels would have decreased. By
treating the spin-0 and spin-} constituents symmetricallyina
fully relativistic calculation, it may be possible to obtain en-
ergy gaps that agree with the experimental mass spectrum of
charged leptons.

If the muon and tau are excited states of the electron,
then the constituents must be described relativistically. Only
then would it be possible to obtain mass (energy) gaps be-
tween successive states that are large compared with the
mass {energy) of the most tightly bound state. Also, the
small upper limit on the electron’s “radius” suggests relativ-
istic binding.

Both of the preliminary calculations just described were
performed in two space dimensions in order that the equa-
tions could be separated. Also, the first calculation was non-
relativistic while the second was only partially relativistic, so
none of the results obtained are rigorously established in
four-dimensional space-time and are only suggestive. Never-
theless, the preliminary results indicate it might be worth-
while to consider a charged, spin-0 and a charged, spin-}
constituent interacting relativistically via minimal electro-
dynamics using a relativistic equation such as the Bethe-
Salpeter equation.

Constructing the “exact” Bethe~Salpeter equation re-
quires considering all Feynman diagrams and is, of course,
impossible from a practical standpoint. Usually only single
exchange of the binding quanta is considered (ladder ap-
proximation ). If the contributions of higher-order diagrams
to the bound states are small, then the ladder approximation
is acceptable physically. Two additional mathematical ap-
proximations, which are not necessarily justified physically,
are commonly made to make the equation easier to solve
analytically. (1) The masses of the constituents are assumed
to be equal. (2) The four-momentum of the bound state is
taken to equal zero.

Making the above two mathematically motivated ap-
proximations, the Bethe-Salpeter equation was solved in the
ladder approximation for bound states of a minimally inter-
acting charged, spin-O constituent and a charged, spin-4 con-
stituent. Since the four-momentum is zero, the Bethe—Sal-
peter equation becomes an eigenvalue equation for the
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coupling constant instead of energy, and the spectrum of the
coupling constant was found to be discrete. The solution was
obtained by analytically continuing Minkowski space into
Euclidean space,’ projecting four-dimensional Euclidean
space onto the surface of a five-dimensional sphere,5® as-
suming the solution is an infinite sum of hyperspherical har-
monics, and integrating the resultant integral using Hecke’s
theorem.’

For the system being considered, the ladder approxima-
tion may be unsatisfactory for very tightly bound states. To
understand intuitively why, recall that when the Klein—-Gor-
don equation is used to describe the minimal electromagnet-
ic interaction of a spin-0 constituent, the following substitu-
tion is made: (id#)>—(id*—qAd*)%. In the Bethe-
Salpeter equation, the above linear term in A4 # corresponds
to single photon exchange (ladder approximation) and the
quadratic term 4,4 # corresponds to the seagull diagram. In
the presence of a charged, magnetic dipole, for partially rela-
tivistic calculations 4 ° is the Coulomb potential and is pro-
portional to 1/r while A is the magnetic potential resulting
from the dipole and is proportional to 1/7°. Therefore at
small distances the seagull term makes a contribution pro-
portional to 1/ and is especially important. If the radius of
the most tightly bound states is sufficiently small then, at
least in the partially relativistic calculation, the seagull term
cannot be neglected.

There is a second indication that the seagull term must
be included. When the Klein—-Gordon equation was used to
describe the constituent boson moving in two space dimen-
sions under the influence of the electromagnetic field of an
infinitely massive fermion,? if the quadratic term 4 »A4* had
been neglected, the energy gaps between successively higher
bound states would have decreased. The quadratic term
A,A* is responsible for the unusual energy spectrum in
which the energy gaps increase between successively higher-
bound states. If solutions to the Bethe-Salpeter equation
with this unusual energy spectrum exist, it is likely that the
seagull term is responsible.

From the partially relativistic calculation, we are thus
motivated to include the seagull contribution to the Bethe-
Salpeter equation, but not necessarily contributions from
other higher-order diagrams. Because of the behavior of the
seagull contribution at small distances, it can be important
for tightly bound states even though it is a second-order dia-
gram. However it is unlikely that other higher-order dia-
grams would make such a significant contribution.

If charged leptons are composite, the most likely candi-
dates are / = 0 bound states. In addition to providing a natu-
ral explanation for the absence of the decay u—e + 9, /=0
states are generally more tightly bound. Recall that when the
Schrodinger equation is separated in the presence of a
spherically symmetric potential, in the radial equation there
is an effective repulsive potential proportional to /(/ + 1)/7*
caused by an effective centrifugal force. When ! = 0, the ef-
fective potential and effective centrifugal force vanish, and
the bound state is more tightly bound. This same general
effect is to be expected in relativisitic calculations.

For isolated systems, total angular momentum is a good
quantum number, but orbital angular momentum usually is
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not. For example, when the Dirac equation is used to de-
scribe an electron with total angular momentum jbound by
a Coulomb potential, two values of orbital angular momen-
tum contribute to each solution, /, =j+4 and [, =j— .
For many types of interactions, no bound orbital angular
momentum eignestates with / = 0 exist. However, because
of the specific form of the minimal electrodynamics interac-
tion, if bound states with zero four-momentum are assumed
to exist that are eigenstates of orbital angular momentum
with / = 0, it is possible to separate the equation as shown in
Sec. III. But this separation is possible only if the constituent
fermion is massless.

No massless, charged fermions exist as free entities, so if
the constituent fermion is required to be massless in a finite-
energy (realistic) calculation, it must either be bound very
tightly or be confined. If, in addition to electrodynamics, a
confining force(s) exists, it could play a negligible role in the
energy (mass) spectrum of the bound states provided the
confining force(s) is negligible in comparison to the electro-
dynamic forces at distances comparable to the “radii” of the
bound states.

If the constituent fermion is massless, the Bethe—Sal-
peter equation has the property that each term anticom-
mutes with y;. Multiplying by the helicity projection opera-
tor 1(1 —ys5) or (1 + ys), the Bethe—Salpeter equation
becomes a two-component equation for left-handed or right-
handed helicity eigenstates, respectively. For / = 0, the two-
component equations are solved in the zero four-momentum
limit. In Sec. IV the ladder approximation is employed and
four left-handed helicity eigenstates are found. In Sec. V the
seagull contribution is included and five left-handed helicity
eigenstates are found. For every left-handed solution there
is, of course, a corresponding right-handed solution. In the
zero four-momentum limit, the Bethe~Salpeter equation be-
comes an eigenvalue equation for the coupling constant and,
for all these solutions, the eigenvalue spectrum of the cou-
pling constant is continuous.

It is certainly speculative to view the charged leptons as
being composite. But if the charged leptons are composite,
the neutrinos may also be. It is remarkable that when the
constituent fermion is massless, the four-component Bethe—
Salpeter equation can be split into a two-component equa-
tion for left-handed helicity eigenstates and a two-compo-
nent equation for right-handed helicity eigenstates. (For
most interactions each two-component equation would in-
volve both left- and right-handed helicity eigenstates.)

If a neutrino is both massless and composite, solving the
bound-state equation determines the eigenvalue spectrum of
some combination of the constituent mass(es) and coupling
constant(s). If the eigenvalue spectrum is discrete, then a
constraint would exist among the constituent masses and
coupling constants. However, if the eigenvalue spectrum is
continuous, as it is for the zero four-momentum solutions
found here, then no such constraint would exist.

Il. BETHE~SALPETER EQUATION INCLUDING BOTH
SINGLE PHOTON EXCHANGE AND THE SEAGULL
CONTRIBUTION

We consider a spin-0 field ¢ (x) that describes a particle
with charge Q and mass M, interacting via minimal electro-
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dynamics with a spin-} field ¥(x) that describes a particle
with charge ¢ and mass m. The (renormalizable) Lagran-
gian is
L=:[(19"— Q4A*)][(—i3, — 04,)¢'] — M*$'¢
+ ¢y, (1 3* — g4 ")) — myyp — IF, F*, (2.1)

where F,, =d, 4, —3d, A,.

The two-particle, Bethe-Salpeter wave function
Xk.a (X1,%;) is defined by

Xka (¥1%2) = (O] TY(x,)$(x,) |K,a). (2.2)
In Eq. (2.2) the symbol T represents time ordering, the sym-
bol X labels the four-momentum X, of the bound state, and

a labels any other quantum numbers necessary to specify the
state. The relative coordinates x* are defined by

xt=xf — x4, (2.3)
and the center-of-mass coordinates X # by
Xt =§&xf + (1 —8)x5, (2.4)

where £ is a constant. The dependence of y « , (x,,x,) on the
center-of-mass coordinates factors with the result that
Xk (X1,%;) can be written as

)—3/26—‘X“K“

Aka (X)), (2.5)

Xxa (X1,%) = 27
where yx, (x) is given by
Xxa () = 2m)*2(0|TY[ (1 — £)x]14( — £x)|K,@). (2.6)

Following standard procedures'® and including the con-
tributions from both single photon exchange (ladder ap-
proximation) and the seagull diagram, the Bethe—Salpeter
equation is'!

(7" pu +Er+K, —m){ = [p"— (1 - H)K”]
X [pv - (l _g)Kv] +M2}XK,a (P)
. > di 1
= —|
qu_ - 2m) (- +ie
X‘}’“[P,, +4, — 2(1— g)Ku ]XK,a (9) — 4(Qq)2
J‘w d4q 2m — yﬂqp 1
—w M P —m* +ie (p+EK—q) +i€

2.7)

F d*k 1 ea (R
e 27 (k+EK— )4 ie

In the above equation, y, () is the Fourier transform of
X K,a (x ) ’

Xk« (p) =_(#)2J' d4x e'p.xXK,a (x)

The terms proportional to gQ and (¢Q)?in (2.7) are, respec-
tively, the contributions from single photon exchange and
the seagull diagram.

We now set K, = 0 thereby restricting attention to the
zero four-momentum limit. To put (2.7) into a form that is
more readily solved, we use the analytic properties of the
bound-state wave function y and analytically continue the
equation into four-dimensional Euclidean space.> We begin
by recalling that in the term from single photon exchange, it
is possible to rotate the g, path of integration 90° counter-
clockwise in the complex g, plane to the straight line from

— i to i oo if py is first rotated 90° counterclockwise in the

(2.8)
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complex p, plane by making the substitution p,—ip,.> To
verify that it is possible to analytically continue the seagull
contribution into Euclidean space, we first note that the sin-
gularities in the integrand of the dk, integral are identical to
those in the single photon exchange term if we make the
substitutions p —¢, ¢ — k in the latter term. Thus in the con-
tribution from the seagull diagram, it is possible to rotate the
ko path of integration to the straight line from — ioo to oo if
g, can be rotated 90° counterclockwise in the complex g,
plane. But in the seagull contribution, the singularities in the
integrand of the dg, integral are the same as these in the
single photon exchange term except for two additional poles
from the term (g% — m?) ~'. As can be easily checked, the
two new poles do not interfere with the rotation of the g,
path of integration. Since the integral over d *k yields an ana-
lytic function in g, in the seagull contribution it is possible to
rotate the g, path of integration to the straight line from
—ico t0iwo if pg is first rotated 90° counterclockwise in the
complex p, plane by making the substitution p,— ip,. Rotat-
ing p, and changing the paths of integration as indicated
above, in the zero four-momentum limit, the Bethe—Salpeter
equation takes the following Euclidean form:

(y'p+m)Pp-p+My,(p)
—_ qQ * d4 _________1____
2m)i)-. -9 pP—9q)
X7 @+ Ixa (@
4°Q% (® ,4 2m+7-q 1
+ 8 d 2
Qmtl_e " gq+m® p—g)(p—9)

1
a(k)'
“(g—k) x

xj d*k (2.9)
— (g—k)

In the above equation v, () =Y — 0.« (iPo,P), the Euclidean
scalar product p-p=p’p® + p+p, and y-p=7"p’ + v'p" The
matrix y°= —iy® where the matrices y* are those of
Ref. 11.

Hi. SEPARABILITY OF THE BETHE-SALPETER
EQUATION IN THE LADDER APPROXIMATION
ASSUMING THE EXISTENCE OF ZERO ORBITAL
ANGULAR MOMENTUM, ZERO FOUR-MOMENTUM
EIGENSOLUTIONS

In this section we assume the existence of zero orbital
angular momentum, zero four-momentum eigensolutions,
and then determine the conditions under which the Bethe-
Salpeter equation separates. We find that separation occurs
only if the spin-4 constituent is massless. Furthermore, even
when the constituent fermion is massless, of all a priori possi-
ble/ = O eigenstates, only a subset separate. Here, for simpli-
city, we consider the Bethe—Salpeter equation in the ladder
approximation. In Sec. V we include the seagull term and
verify that the equation also separates there when the wave
function is assumed to have the form determined here.

Since we will eventually set the constituent fermion
mass m = 0, it is convenient to write the four-component
equation (2.9) as two, two-component equations. To ac-
complish this we write
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xu)
czE ’ (31)
x (Xd
define

X =xu £ Xar (3.2)
and note that

_ xu x(:t)
(li?’s)X=(li1/5)(Xd)=(:tx(i) . (3.3)

Multiplying (2.9) by (1 ¥5) and recalling that y; anti-
commutes with y #,
X( + )(p) )
ix( + )(p)
X(IF)(p) )
+m ~+M%(
o7 YO
v @+q)
r—9)@—9

yp(pp+M?) (

— qQ - d4

Qm*)_.

X(j:)(q) )
X(ix‘*’(q) ’

As mentioned previously, for simplicity the contribution
from the seagull term is being omitted. Writing the four-
component gamma matrices in terms of the Pauli sigma ma-
trices o’, (3.4) can be rewritten as the two-component equa-
tion

(—ip’top)(pp+M)y = (p)

(3.4)

+mpp+MHy' ¥ (p)
_ qQ - d4 1
- 4
2m*J-« -9 -
X[—i(p°+¢°) o+ @y E(9). (3.5)
To proceed we introduce polar coordinates
p° = |p|cos 6,, p*® = |p|sin B, cos B,
3.6)

p' = |p|sin 8, sin 8, cos §, p* = |p|sin 6, sin 6, sin §,
with corresponding expressions for the components of ¢* in
terms of primed angles. Then

diq=|q]*sin’8; sin 0 d |q|d0 ) d6 ", do’

=|q|’d |q|dQy;, . 3.7

ol Upl? + M2 = (|p])
X [ —icos 0, Pf,,zo)(ez)gbg/;,,),, (05,4) £ sin 6, P§1.20)¢§/;,r)n
__ 92 d|q|dQy, lgl®

- Defining the four-dimensional unit vectors by

#1 4, = (cos ,, sin 6, cos 6, sin &, sin G, cos ¢,

sin 8, sin &, sin ¢), (3.8a)
D4y = (cos 85 sin @3 cos 83, sin @ sin 63 cos ¢',
sin 8 sin 05 sin ¢'), (3.8b)
we find
-9 (p—q9) =p* + IgI* — 2/p| lglcos O, (3.8¢)

where O, is the angle between # 4, and § 4, .

The possible angular dependence of the four-component
spinor y, is known.* From the general results [see Ref. 4,
Eq. (3.14)], it follows immediately that the most general
form of a two-component spinor y , that is an eigenstate of
orbital angular momentum / = 0 is

X @) =25 E(pHPR(0)8, X2 m (63,8),
n=0,12,... (3.9)
In the above equation f*’(|p|) is an undetermined func-
tion of |p|, the factor of 2 is arbitrarily included for later
convenience, and P {2 is defined in Ref. 4 [Eq. (A8)]. The

two-component spinors ¢{ > have the indicated eigenvalues
and are given below,

40 = [J G+m/% Y;":,;;zws,m];
' VG —m7%  YI*i52(058)
j=1+1/2; 1=0,1,2,.., (3.10a)
G
_ [ VO+T=-m72(G+D Y}"+—1/'§2(93,¢)]_
L VGFTFmaGED  Yroapes )l
j=1-1/72; 1=1,.2,... (3.10b)

The ¢/’ can be transformed into each other using the rela-
tionship

152(050) = (o p/|p))BST (05,0). (3.11)

In (3.10), the Y ["(6,,¢) are spherical harmonics. Using
(3.6)-(3.11), (3.5) becomes

(658)] + m(lp|> + M2 T (|p|)P3(6,)8} ). (6:,8)

Lo [ dadtiyia
2m)*) |p|* + |q1* — 2|p| |glcos ©,

X2 E(|g]) [ —icos 0P R(0;)41/1,(85,8') £sin 0P 3 (8;3)81,5,,(65.6)].

Now from Ref. 4 [Eq. (A23)], for n>1,

cos QPR () =[1/Q2n+5)]1[(n+ DPE, 1,(0) + (n+s— P, (O]

- (—ip° -)f
am - P ETP ) PR~ 20p] lglcos O

21 =(|g)P3(03)1 50 (05,4

(3.12)

(3.13)

To determine the relationship for n = 0, we first note from the definition of P 3 that
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P30 =1,
implying
cos O P (9) = (1/5)P {3 (0).

With the convention P §)
Ref. 4 [Eq. (A24)], for n>2,

sin@ P (0) =[1/Q2n+5)1 [P, 1,(0)

P{3(8) =scos b,

= 0ifp <, (3.13) includes (3.15) as a special case and is therefore valid for alln = 0,1,2,...

—P2 ()]

(3.14)

(3.15)

. From

(3.16)

To determine the relationship for n = 0 and 1, we use the definition of P and calculate

P{)(6) =ssin6, P§(0) =s(s+ 2)sin 6 cos 6.
Then employing (3.14) and (3.17),

sin @ P§)(8) = (1/5)P {3 (8),

sin @ P{3(0) = [1/(s + 2) 1P (9).

Here, and in all subsequent equations, we adopt the convention P, ) =

and is therefore valid for all n = 0,1,2,..
lplClp? + M) = (p) [
+ [1/(n+

qQ d |qldQy,, lq|®

(3.17)

(3.18a)
(3.18b)
= 0if p <. Then (3.16) includes (3.18) as special cases

. The identities (3.13) and (3.16) allow (3.12) to be written in the form
_i(bpr(nz-f)—IO(QZ +Pr(zzl1o(02))¢§/-'2'r)n(03’¢)
DIPZ1(62) =P ,(6,) 850 (050)] + 2m(p|> + MA)f T (Ip|)PL(6,)8( ), (65,0)

(—ip° ')f
Tamt TP

J‘ d |q|dQys, |9|4
(21T)4 I + 191> — 2|p| |g|cos O,

2|p| |g|cos ® 4,
f(j:)(lq|)[

+ [1/(n+DIPE (85 —P2, (05))85.(85.8)].

A (1gPL3(63)8i 4, (05,6

—{(P2,0(03) + P2 ,0(0:))8 (85,4

(3.19)

The two integrals over dQ¢,, can be performed using Hecke’s theorem.® Adopting the notation of Ref. 4, Appendix A, the

above equation takes the form

ol (P + M2 = UpD [ —

P(2) 10(62) +P(2) 10(62))¢§/;r)n (03’¢)

+[1/(n+ DUPE 1 (6) —P2 1 (6,))88 20, (02,8) ] + 2m([p|* + M) T ([p)P X (0)¢{ %), (6:.8)

— [90/Cm*|p|[

—H{P210(02) + P2 1 (6,))8350.(658) £ [1/(n+ D](PE 1,1 (63)

PP OW32 6] [ dlal a7 = (gD A, (el laD

__992 —iP® 14(6,)9 1 (6, ¢)+ L

(2m)*
(gﬂ?)‘, —’P(z) 10(92)¢(+)(93:¢):F__1P32—)11
where
47 ! dx
An( ’ )=
Pl = ) P+ 1aP 2l e
X1 —=x%C(x). (3.21)

In obtaining (3.20), after evaluating the first integral in
(3.19), identities (3.13) and (3.16) were used. In (3.21),
C (x) is a Gegenbauer polynomial. The integral in (3.21)
can be performed with the aid of a table of integrals'? yield-
ing
—i(2ﬂ')3/2 (§2_ 1)1/4 U2
An(lpl’lql)"‘ n+1 LD| Iql n+1/2(§),
(3.22)

where £ = (|p|*> + |9/®)/2|p| |¢| and Q )/, , is an associat-
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——P@ L 083568 | [ alal a1 (g A, obla)

(6612658 [ dlal a1 =g A, (pllaD

(3.20)

I
ed Legendre function of the second kind.

The hyperspherical harmonics are linearly independent
so the coefficient of P 3 (8,)¢{}5 ) (65,4) in (3.20) must
vanish yielding

2m(|p]* + M2)fF(|p]) =0. (3.23)

Since the above equation must be satisfied for all |p|, the
fermion mass m must equal zero if solutions of the form
(3.9) exist. But even if m = 0, the angular dependence does
not necessarily separate because, from (3.22),

A,_(plsle)#A, 1 (pl,|g]). However, recalling the
convention P, ) = 0 if p < 7, if the fermion mass m = 0 and
the index n = 0 then the angular dependence of the solu-
tions in (3.20) does separate. If we had included the seagull
term, we would have arrived at the same conclusions, but the
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calculation is more involved. Thus when we solve the Bethe—
Salpeter equation in the ladder approximation or when the
seagull contribution is also included, we require the constitu-
ent fermion mass m = 0 and seek / = O eigenstates of the
form

XD =2 E (PP (0,08 1 am (058).  (3.24)

IV. ZERO ORBITAL ANGULAR MOMENTUM, ZERO
FOUR-MOMENTUM HELICITY EIGENSTATES OF THE
BETHE-SALPETER EQUATION IN THE LADDER
APPROXIMATION

To solve the Bethe—Salpeter equation, we use the meth-
od of Fock®® and project four-dimensional momentum
space onto the surface of a five-dimensional hypersphere
with the transformation

|p| =M tan(6,/2). 4.1)

The factor 2 is included in the above formula because the
range of 8, on a hypersphere must be 0<8, <7 so as 8, varies
over this range, |p| varies from 0 to « as required. Defining
the four-vector ¢ in analogy with (3.6) and (4.1) except that
the angles are denoted by primes,

d*q=[M*/16 cos®(81/2)] sin® 6| sin® 6§} sin 6
Xd6i do; do; dg’, (4.2a)
= [M*/16 cos*(8{/2) |d€L,. (4.2b)

The components of the unit vector &, in five dimensions
are

f1(s, = (cos 8,,sin 8, cos 6,,
sin @, sin 8, cos 8, sin 8, sin 6, sin 0, cos @,
(4.3)

Using a corresponding expression for the unit vector 9, in
terms of primed angles, it is straightforward to show that

-9 @—9
= [M?/cos?(6,/2)cos’(07/2)]4(1 —cos ®). (4.4)

In (4.4), © is the angle between the unit vectors # s, and
s, . Setting m =0 and using (4.2) and (4.4), (3.5) be-
comes

(—ip® + o YM*(1 + tan®(6,/2) )y’ (p)

=__&[ —in° a"’)fdﬂ’ Mt
2y | TP £ 716 cos®(6/2)

sin 8, sin &, sin 6, sin @).

2 cos?(6,/2) cos*(6]/2) (5
dqQ;
M2%(1 —cos ®) X (q)+f @
y M* 2 cos*(68,/2)cos?(8/2)
16 cos® (8 /2) M?2(1 —cos ®)

X ( —iq°io"q")x‘i’(q)]- (4.5)

We seek / = 0 solutions of the form (3.24). To simplify the
above equation we note that
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( _ ipo + aJpl)X( + )(p)
=fE(|p]) [ — ilp|cos 6, 2P {3 (6,)8 %), (65,¢)
+ |p|s1n o, 2P(()20)(02)¢1/2m(03s¢)] (4.6)

With the aid of (3.15) and (3.18a), the above equation be-
comes

(—ip® + P )y £ (p)
=1 E(pDIp|[ —iPZ(6,)6}%), (0:,,8)

+ P{3(6,)81,:0 (65,8)]. 4.7)
Deﬁmng
¥0(02,05,0)=P32(0,)4. %), (658), (4.82)
P *(0,,05,8)= — iP 2(6,)84), (65,0)
P(2(6,)¢5 5, (0:,8), (4.8b)
(4.7) becomes
(= ip° + 0P)90(02,05,8) = ([p|/2)9{*(6,,6,,8).
(4.9)
With the above results, (4.5) takes the form
M3 sin(6,/2)  cc4) ()9, 0
COS (01/2)f (lpl)'ﬁl ( 2 3¢)
__ 9 M ﬂ[z a0 i
(27)4 2 cos > (-t o)
dQi,, cos’(6]/2) (+)
Jl—cos@ coss(G;/Z)f (lal)
- dq cos2(6:/2)
X (0"0:’ /)+f (4) 1
Yo(03.03.4 1 —cos ® cos®(81/2)

xtan(@ /21 = (lg P * (03,05, |
(4.10)
The function £+’ (|p|) is assumed to be of the form
f(:t)([pl) 0
L_2PD _ S n 4204 3)f P (6)),
cos®(6,/2) ,.g’o( n+2v+3)f, n+v0(01)
v=0,1,2,.., (4.11)

where the f{ £’ are constants and the factor of 2n 4 2v + 3
has been included for computational convenience. Substitut-
ing (4.11) into (4.10), the Bethe-Salpeter equation in the
ladder approximation becomes

M3 sin LY cos® %

x i (2n+2v + 3)fEPE) 0 (6,)9%(6,,05,8)

9Q M’
Qm* 8

— U, + 1), (4.12)

where

61

_& 2 0082 —_—
2

i [
IL=(—p° a“)cosz—‘f
1=(—ip"top 2) 1 —cos®

X3 @n+2v 43 PO (01)%6(65,05.8",
n=0

4.13)
and
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I = Mcos? &1 dQy, . 0] 01 The left-hand side (1hs) of (4.12) and the integrals 7, and I,
2= M0 S | T T eos® Ty S8 will now be evaluated one at a time with v =0. The v = 1
solution can be obtained from the v = O solution simply by
- setting f§ % = 0. The v = 2,3,... solutions can be obtained

XY Qu+2v43)f{EP3) ,(07) from the v = 0 solution in a similar fashion.
=0 Using the trigonometric identities [sin(8/2)][cos(8/
_ 2)] =1sin @ and cos*(8/2) = (1)(14-cos ) as well as

XY{*(63,05.4"). (4.14)  identities in the Appendix of Ref. 4,

1hs of (4.12)
_M & [ (n=2)(n—1) ., 201=1) .y,

8 = len—D@En+17"" 7 2m41 "7
+[1_ (n—1(n-2) (n—1(n+3) n(n+4) }f(i> 6(2n +3) (+)
2n—-1)2n+1) Cn+1)2n+3) 2n4+3)2n+5) Rn+1)2n+95)
_[1 (n—Dn+3) n(n+4) _ _(n+4)(n+5) ]f‘i’
2n+1)2n+3) 2n+3)2n+35) Cn+52n+17)
_2(n+4) (+) _ (n+4)(n+3) (+ ]P(S) 9.7+ (8,.0 4.15
2n+5 n+2 (2n+5)(2n+7) fn ( 1)¢ ( 2 3,¢) ( )

In deriving the above equation, the identities in the Appendix of Ref. 4 were only used when p>r for all P ) appearing in the
identity. If one of the P} did not satisfy this condition, then the explicit expressions for the P {5 of mterest were used to
simplify (4.15).

To evaluate the integral I, we set v = 0 and use 2 cos?(8]/2) = (1 + cos 8 ) yielding

- dQ; = -
I,=(—m°idp’)cos2ﬁf—-L(l+cos€{) S 2n+3)f 1 PR(O)Y:(05,05.4). (4.16)
2J) 1—cos® n=0
From (3.13)
o 0 aqQy,
IL=(—ip°+ % cosz—‘f———( 2
1= (= P 2J 1—cos®

x[i Q43 PROD + S L[+ DPD ,(05) + (n+ DPEL (6} )]}%(ez,eg,«») (4.17)
n=0 n=0

Each term under the integral is a hyperspherical harmonic and can therefore be integrated using Hecke’s theorem.® Using the
notation of Ref. 4 [see Eqs. (A9) and (A10)], after integration (4.17) becomes

I, = (—ip® + o&’p')cos? 4—92—‘

X 2 [iE[Qr+DAPIZO) + (n+2)A,_ P2 15(0) + (n+ DA, PP 16 (8,) [¥0(6,05,8), (4.18)

where
4r? ! 87
A=—"f°o dx(1 C,3,/2 dt=——""“"“~ | 4.19
St nmaD Jo Rk = T D (4.19)

The integral in (4.19) is easily evaluated employing the technique discussed in the Appendix of Ref. 4. Using (4.9), (4.1), and
the identity [sin(8,/2)][cos(6,/2)] =1sin 6,

I, _%’sm 0, 2f;i>[(2n +3)APRB) + (n+2)A, PP (6) + (n+ DA, P 16)(0,) ]4%(6,,6,8).

n=0

(4.20)
Since (3.16) has been established for all n = 0,1,2,...,
2
zfu:){,\ [Pff,’r,,,(@]) —P,gs_)l,l(al)] + 2nn4—;- A [pm(e ) —P®,, (6, )]
n+1 3 CYPRS | I ESIT- ) 421
+2n+5 An+1 [Pn+2,l (01) —Pn,l( 2)] 'pl ( 2 3’¢)’ ( . )
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M & [ n—1 n+2 n+1
=— An— r(:f) An—— f:é:-) ( n—-1 An ) Sti)
4,,2, 2+ 1 faZe + AnifaZ) n+ 1 Yo s !
'—An+l fl:-i:-i - 2 +4 An+1f§f§]Pf1,31)(91)17’§i)(92,93s¢)- (422)
2n+435
The integral I, is evaluated in a similar fashion and is given by
n-—1 n—1 n-+4
L== A, _SLELHASLE) ——( 1 —T——A, ) A
2 n21[2n+1 fa= S 2+ 1 Yoapes Y)Y
4 -

- Anfftii ha 2’21 5 An+1f§,$%]Pf,,31)(61)¢§i)(62,93,¢)- (4‘»23)

With the aid of the explicit expression (4.19) for A,, the sum of the integrals /, and I, is

I1+12=2172Mi{ 2(n—1) (£) 42 pea [ 1 N 1 ]
Sl@en+Dnm+1)" " ant2) " T I DO D PFOTCEETIE
2 2(n +4)
XfEE) () — ]P(s)g +(0,.0,.8). 424
S T Dan T aTDme G PR O 6008 (4.24)

Substituting (4.15) and (4.24) into (4.12) and canceling common factors, the £{*’ must satisfy the following set of

6(2n 4+ 3)

equations:
(n—2)(n—-1) (x) 2(n—1) .4
2n—1)2n+1) T ot SnZa
+[1_ (n—=2)(n—1) (n=1Dn+3) ] n(n +4) }f(ﬁ
(2n—1)(2n+1) n+1D2r+3) 2n+3)2n+5)

- Dn+3) nin+4)

f(i)
n

n—1

(2n+1)(2n +5)

(n
[ An+12n+3) @n+3)2n+5)
_2(73'*'4) (+) (n+4)(n+35) (+)
m+5 " 2n+S@2n+7 "3
2 (x)

_..lQ._[ 2(n—1) fiE) +
8Pl n+ Dnn+ 1) "% T+
2(n+4)

_ (m+H(r+S) }f
(2n+5)(2n+7)

______Z_._fc £)
(n+D(n+3)""" (n+2)(n+3)(2n +5)

Note that the equations for "’ are identical to those for
S so we drop the superscript and write f{*’=f,. The
n == 1 equation allows f, to be expressed in terms of £, f3, /5,
and f,. Continuing in this manner, all f, for n»4 can be
expressed in terms f,,, f}, f,, and f;. We thus obtain four lin-
early independent solutions for any value of the coupling
constant.

Here solutions are obtained for any value of the coupling
constant while in Ref. 4 solutions were obtained only for
specific discrete values. This significant difference in the so-
lutions arises because of the difference in the way the equa-
tions separate. In Ref. 4 there are two possibilities for the
angular dependence, ¥{*’(6,,0,,¢) or ¥5*°(6,,0,,¢). The
coefficients of both ¢ *(6,,0,,4) and ¢¥§*’(6,,6,,¢) must
vanish yielding two sets of equations. Consistency between
the two sets of equations then leads to the requirement that
the coupling constant equals one of a specific discrete set of
eigenvalues. In contrast, for the / = 0 solutions discussed
here, the possible angular dependence is given by the single
function ¥, (6,,05,¢) defined in (4.8a). Only one set of equa-
tions is obtained so there is no consistency equation and no
resulting restriction on the possible values of the coupling
constant.
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ff,f%], n=12,.,%.

+H

(%)
n+1

[ l + 1 ]f(;t)
nn+1DQ2n+1)  (+2)(n+3)2n+5 17"

(4.25)

-
V. ZERO ORBITAL ANGULAR MOMENTUM, ZERO
FOUR-MOMENTUM HELICITY EIGENSTATES
INCLUDING CONTRIBUTIONS FROM BOTH SINGLE
PHOTON EXCHANGE AND THE SEAGULL DIAGRAM

Using the same procedures that led to (4.12), when the
contribution of the seagull diagram is included, the Bethe—
Salpeter equation takes the form

91

9 o
M3 sin <L cos® 2L 2n+2v+3
2;::0( )

Xf;(x:t )P 3 vo(a )¢§ & )(62’03,¢)

__ 492 M*? °Q* M*
r) 8 I, +2)+(2 ¥ 16

L (5.1)

The integrals I, and I, are given by (4.13) and (4.14), re-
spectively, and I, is the eightfold integral

I, = —_
3 2) 1—cos®
1 -
X (—ig® + og
o (8 /sm@1 /2y |4 EID
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dQy,, , 07
X | —=—2cos®>— 2n+4+2v+3
Jl—cos@' Z( +3)

Xf‘*’Pflvo(e")tﬁo(G 03:6"). (5.2)

The integration variable k appearing in (2.9) has been ex-
pressed in the above equation in terms of double-primed an-
gles by introducing polar coordinates in analogy with (3.6)
and (4.1). The angle @' is the angle between the unit vectors
d(s, and s, , where s, and 5, are given by (4.3) except
that the unprimed angles are replaced by primed or double-
primed angles, respectively.

Without loss of generality, we set v = 0 as discussed
in the previous section. Then using cos?(67/2) = (1

+cos87),

dQis, 1
1 —cos ® cos?(8}/2)sin*(8}/2)

291

I, =cos

o dar
x(—iq°ia‘q')f—~—“’ (1+cos87%)
1 —cos ®

X 3 Q2+ 3 PBONI(07.058").  (53)
n=0

With the aid of the identity (3.13) which has been estab-
lished for all integer values of n>0,

I,= coszﬁ Gt !

1 —cos® cos?(@;/2)sin*(0;/2)
dﬂ&) (+)
s@l 2 f
X[@rn4+3)PRO7)+(n+ DPL,(67)

+(n+ PP, (07)196(65.07.67).  (5.4)

The mtegral over d(1¢,, can now be evaluated using Hecke’s
theorem,*®

X (—ig° ia‘q)fl

I =cos2ﬁf dQZ‘t) 1
} 2J 1—cos® cos?(6;/2)sin*(8}/2)

X(—ig°+oq) Y fi*
n=0

X[(2n+3)A,PRO1) + (n+ DA, (P2 1(87)

+ (n+2)A,_ P2 ,(0] )]¢o(92’03v¢ ), (5.5)

where A, is given in (4.19). The product (—ig°
+ 0’9" )y (64,0 5,¢") follows immediately from (4.9) yield-
ing

I3=Mcos2§—‘-f
2 2

d{di,, 1
1 —cos ® cos*(8;/2)sin(8}/2)

X 2 FE[Qn+3)APRO)

+ 4+ DA, P (8]

+(n+2)A,_ P, (0))]9%(63,05.4').
(5.6)
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Expressing cos(8/2) and sin(8 /2) in terms of cos 8 and
sin 6,

I= M(1+cos0)f Qo 1
1—cos® (1+cosf])sin@;

X 2 fEE[@n+3)A,PR(6Y)

+(n+l)An+lPt(13-f)—10(0’)

+(n4+2)A,_ PP (01 ][#1%(64,05,6).
(5.7)

The above integral cannot be evaluated immediately be-
cause of the factor [ (1 + cos 61 )sin 6 {] . However, if we
choose the constants £¢*’ such that the sum on the right-
hand side of the above equation is given by

Zf(i)[(2n+3)A P(B)(o )

n=0

+ (n+ I)An+1P1(13—§)-1,0(6;)

+(n+2)A,_ P (0]

=(1+4cosf})sinf} E grP(8),
n=1

where the g{*’ are constants, the integral in (5.7) can be
evaluated using Hecke’s theorem.*® Our strategy, then, is to
evaluate I, in terms of g{ *’. When the expression for 7, and
results from Sec. IV are substituted into the Bethe-Salpeter
equation (5.1), the equation becomes a recursion relation
for the f{*’ and g!*’ which are not all independent. We
then solve (5.8) and express the £{ %’ in terms of the g{ *°.

To evaluate (5.7) in terms of the g{ £, we substitute
(5.8) into (5.7) and integrate using Hecke’s theorem,*°

(5.8)

aqy;
I, =M(1+cos8,) f——(f)—
1—cos®

X S glEFPERO Y E(0305.4),

n=1

=M(1 + cos 8,) i gfli)Anpft?l)(ol)

n=1

X P E(0,,05,8). (5.9)

Making use of Ref. 4 [Eq. (A23)] and the fact that cos 8
XPS) =§P;?1)’

13=M[ g ©A,PEB,)

n=1

+ 3 gA,

n=1 2 3 [(n+3)P’(13—)1,l

+nP513-:— 1,1 ]}!Zi:t)(02,03’¢)- (5.10)
Changing the summation indices and using the explicit
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expression (4.19) for A,,, we obtain the desired result for 5, n+4 gx) ]
(n +2)(n+3)(2n +5)

n—1
Iy =8 M E [n(n+1)(2n+1) & XP 2 (69 *(0,0:8). (5.11)
Substxtutmg (4.15), (4.24), and (5.11) into (5.1), the
+ .t gt Bethe—Salpeter equation yields the following recursion rela-
(n+1)(n+2)°" tion:
1
(n—-2)(n—=1) .4, 2(”—1))0(1:)
(2n——1)(2n+1) R T T
—2)(n—1) (n—1D(n+3) n(n+4) ] (i)
+[ (2n—l)(2n+l)+(2n+l)(2n+3)+(2n+3)(2n+5) InZi
6(2n +3) ) _ [ n=D+3  nar+4) _ (n+4H(n+5) ]f‘i’
Qn+D2n+5°"" Qn+1)2n+3)  Cn+3)2n+5 @rn+5C@n+717 !
_AnA Y by (D (ES) s
m+5 7" @2n+5n+n7"T
=_£ 2(n—1) () 2 (+) 3[ 1 1 }(:t)
87 (2n+1)n(n+1)f""+n(n+2> 1 n(n+1)(2n+1)+(n+2)(n+3)(2n+5) I

2 (+) 2(n+4) 1t )] + q7°0?

T A, A s+l T 2

S+ D43 (2 (n43)(2n +5) 2m*

n—1 1 n+4
X[ gt +—m———— gl ¥+

an+ D@+ D Tt Dt T i+ D (43 2+ )
The f{*’ and g{ *’ are not independent so (5.8) must now be solved to express f{*’ in terms of the g{ +’. Using Eq. (A25)
from Ref. 4 and then (3.13), (5.8) becomes

gm]; n=123,.. (5.12)

Z FiE[Cr+DAPZOD) + (n+ DA, PR 0+ (n+2)A,_ P2 5(6])]

n=0

(+)
- gn

=(1+4+cosf}) 2

n=1

[(n+3)(n+2)P‘” 0 (81) —n(n+DPE,,(09)]

© (+)
=3 - [+ + PP 4(8) —nn+ P (6]

i=1(2n 4+ 3)
> g (n+3)(n+2)
,,;1 2n+3)2n+1)
© g nn+1)
=1 2n+3)(2n +5)
Changing the summation indices in various ways and making use of the explicit expression (4.19) for A,, (5.13) can be
rewritten in the convenient form

[rPRO) +(n+ 1P ,5(01)]

[(n+2)P3),0(01) + (n+3)PZ(OD]. (5.13)

© 8
AE1+H @+ + (4 350 P36
Z:o[nf 1+ (2n f ( a1 m+ 2+ 1)
_ < [_ nn—1n—-2) ., nn-—1) 1) 3n(n+3) (+)
Sl @D+ 241 = (2n+1)(2n +5)
(n+4)(n+3) (i) (n+35)(n+4)(n+3) (i)]P(a) ’
2n+5 Eiiit Crn+7)2n+5) 82 [Pro(61). (5.14)

Since the coefficients of P {}J(6 ) on the left-hand and right-hand sides of (5.14) must be equal, the f{*’ and g{ =’ must
satisfy

87
f‘f) 2 3 f.i) 3 ’(l:t)
[AfiE] + 2n 4+ 3) () + (n+ 3)f{E) SPETIYCEST

_ nn—1)(n-—2) (i)_n(n—l) 3n(n+3)

x WEL+ ke
2n—Dr+ D 2T 1 B T nr e s &
A H@+3) ey | BN EDREI) iy g1, (5.15)

2n+5 n+7)(2n+5)
As can be readily checked, the above equation is satisfied if the £’ are given by
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= (— 1y + LD

_(+2)(n=1)

(n+4)(n+1)

&El + 28 + ——————&1 | (5.16)

872 (2n + 3) 2n+1

2n+5

From the above equation we note that if (5.8) is to be satisfied, £§ =’ is arbitrary and all f{ *’ for n > 0 are expressed in terms of

f§¥)andg{®),i>1.

Substituting (5.16) into (5.12), the Bethe—Salpeter equation yields a recursion relation among the g{ > and f§*°. Just as
was the case in the ladder approximation, here the equations for g +7, f{+, and g{ =, f{~ are identical so we drop the
superscript. Taking #» = 1 in (5.12) and making use of (5.16), gs is determined in terms of £, g,, &>, &5, and g,. Similarly,
taking n = 2, g, can be expressed in terms of the same five constants and so forth.

From (3.24), (4.11), and (5.16), the / = 0 helicity eigenstates of the Bethe-Salpeter equation (5.1) are

X(i)(P) =2 coss%l‘ ZO (2n + 3)f;,Pf,,3o)(9,)P((,,20’(02)¢5:1’,2,m(03,¢)

0, < n(n+3) (n+2)(n—1)

=2cos® 2 [ —D"2n+3), + — " .
PR R Ch i1 S t®

4 1
-(1’+Tn)(+"—5+—)—gn+l]]Pi?o)(01)P3?3(02)¢,‘:3,2,m(03,¢), (5.17)
[
where f, and the g, satisfy (5.12) and (5.16). Substituting = ACKNOWLEDGMENTS

the explicit expressions for gs, g¢, etc. as determined from
(5.12) and (5.16) into (5.17), y‘*’(p) equals a function
times f, plus a function times g, plus * * - plus a function times
£4- It is straightforward to show that the five functions that,
respectively, multiply f, g, &5, &3> and g, are linearly inde-
pendent so there are five linearly independent solutions.
Thus when the contribution from the seagull diagram is in-
cluded in the Bethe-Salpeter equation, the number of zero
four-momentum, / = 0 helicity eigenstates increases from
four to five, verifying the importance of the seagull contribu-
tion for strongly bound systems. As in the ladder approxima-
tion, these solutions exist for all values of the coupling con-
stant.

To determine if this model is actually of physical inter-
est, the form of the Bethe-Salpeter equation that includes
the seagull contribution must be solved, both for the finite-
energy and lightlike cases. These calculations are currently
in progress.
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In the haromonic oscillator basis, the effective Hamiltonians are constructed for the
polynomial interactions V(r) = 2{_,g,7* and 1<4. Their form (factorized in terms of the
vectorial continued fractions) is simpler in a semirelativistic (¢ < « ) reformulation. Its
degeneracy in the ¢ — oo limit (confluence of the physical and unphysical solutions) is removed
by solving a coupled set of the nonlinear algebraic equations in REDUCE.

1. INTRODUCTION
The general anharmonic oscillator
d li+1
(- L+ M g gt o)

=E¥(r), £>0, I=(-—1),01,.., (1.1)

is a phenomenological as well as methodical laboratory in
quantum mechanics.' Its use ranges from a purely nonrelati-
vistic description of confinement® up to an analysis of the
perturbative and nonperturbative aspects of the quantum
field theory.? In the former case, a maximal numerical effi-
ciency is usually required. The present study of Eq. (1.1) is
intended to complement the latter [e.g., Wentzel-Kramers—
Brillouin (WKB) or perturbative *] type of applications,
where an emphasis is laid upon a global and analytic insight
into the solutions.

We shall start from the recurrent (matrix continued
fractional, MCF,® and vectorially continued fractional,
VCF®) solutions of equations of the type (1.1). In brief,
recalling accelerations of their convergence as achieved by a
systematic subtraction of the so-called fixed-point (FP) ap-
proximants,” we shall deliver the explicit nonperturbative
approximate forms of the corresponding solvable (finite-di-
mensional) effective Hamiltonians® for £ = 2, 3, and 4.

First, we describe the recurrent factorization method in
its entirely universal form in Sec. II. An essence of both the
MCF and (generalized) VCF approaches is shown to lie in
an appropriate decomposition of the resolvent. The usual
band-matrix assumption (with H,,, = 0for all m and n such
that |m — n|>1¢) is then found redundant: An arbitrary
t< oo matrix H is shown to admit the VCF factorization.

The universal 1< o0 VCF method fully preserves a con-
ceptual simplicity of the # = 1 special case® reviewed briefly
in Appendix A. In particular, the close interrelation between
the # = 1 analytic continued fractional convergence and an
asymptotic smoothness of H (Appendix B) is extended to
t> 1. In Sec. III, this leads to an explicit algebraic nonpertur-
bative definition of the effective Hamiltonians H*T.

In Sec. IV, we apply the general method to the particu-
lar bound state problem (1.1). In the first step (Sec. IV A),
we recall the results of Ref. 10 and regularize the anharmoni-
city in Eq. (1.1) by its Fourier symmetrization. Physically,
this corresponds to an introduction of some particular rela-
tivistic corrections. Methodically this enables us to run effi-
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ciently through the basic technicalities. Then, an asymptotic

degeneracy of the nonrelativistic limit is found to admit a

straightforward removal: We reinterpret the recently devel-

oped asymptotic formulas for wave functions'' as an alge-

braic ansatz, and demonstrate its suitability by means of the

computer symbolic manipulations in REDUCE (Sec. IV B).
Section V is a summary.

Il. GENERAL HAMILTONIANS AND THE VECTORIAL
CONTINUED FRACTIONS

An introduction of a model-space projector
P=3Y_.|n)(n| and a trivial partitioning of the Schré-
dinger equation

PH-E)(P+ D)) =0,

QH-E)YQ+P)|Y)=0, @Q=1-P,

enable one to eliminate the out-of-the-model-space compo-
nents of the wave functions,

QlY) = (E—QHQ) 'QHP|p), |p)=Ply). (22)
The rest of Eq. (2.1) acquires the form of an effective finite-
dimensional equation

2.1)

H¥p)=E|p), (2.3)
where®
H*® = PHP + PHQ(E — QHQ) "‘QHP. 2.4)

Without any loss of generality, we may now consider a
factorization

H—-E=UL, (2.5)
where U is an upper triangular matrix or any regular matrix
with the property QU = QUQ. Similarly, the factor matrix L

must be such that L = QLQ. Then, we may rewrite Eq.
(2.4) in an explicitly factorized form

H* — E=PULP — PULQ(1/QULQ)QULP
= PULP — PUQLP = PUPLP

born by Eq. (2.5). This is our starting point.

For the simple tridiagonal Hamiltonian (A3) (cf. Ap-
pendix A), the factors PHQ and QHP contain just one non-
zero matrix element. Within any model space, the difference
between H and H™ concerns also a single element [cf. (A4)
and (A5)],

(2.6)
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4, C
... q
Hf = , Gy=E+—.
By_» Ay Cu M +FM
By_1 Gu
(2.7)

Thus we may define #° by means of the analytic continued
fractions.® A similar prescription is to be derived now for an
entirely general matrix H.

A motivation for such an effort is the following. In the
realistic (e.g., many-body) systems with complicated Ham-
iltonians H and simple trial Lanczos state |0), a tridiagonali-
zation of H achieved by means of the Lanczos prescription*?
(A1) will lead to the complicated basis states |1), |2),... .
Vice versa, the product H |0) will contain a number of the
basis states |1), |2),... whenever we require their reasonable
simplicity,'?

H|0) =|0)A4,+ |1)BP + |2)BEP + -+
Similarly, in a repetition of this procedure,

H|1)=[0)C{®+ |1)4,+ |2)BV + |3) B> + ---

(2.8b)
anumber of the new states will be infinite in principle. In this
way, a tridiagonality of H will be lost and we may return, at

least partially, to a free choice of the suitable basis states. At
most, we may expect that the coefficients B { will be small

(2.8a)

for j» 1. ;
Formally, we may introduce the vectorial notation
B k)
(B",BP,..)=Bf, B,=|BP} [k=|lk+1)]

generalize Eq. (Al),
Hk)=|0)CP +|1)CF-V 4o 4 Jk—-1)CP
+ |k )4, + |k+1)B,, k=0,1,., (2.9)

and reinterpret our operator or general matrix H as tridia-
gonal in a purely formal “vectorial” partitioning

4, CT
B T
H=]"° 4 G i (2.10)
B, 4, CT

When we introduce also the tilded diagonal matrices
F
F k= F, k41 3

auxiliary vectors Ul = (U, UP,.), LT_, =L,
L® .,.), k=1,2,.., and vectors with superscripts [omit-
|

FI'L((,” 1

F.L(2) F.L(l)
(k |9y = (= D)*(O[g)-det| "> ° 2t

Fk'L(()k) Fk'Lgk—l)

The VCF construction of bound states is completed.
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ted components, C{ ™ = (C{"+V,C{m+2,..), km»1],
we may write (2.5),

(4o—E  CT
H—-E= B, 4, —E C;
1 ULF 1
(1 Uk FL, 1
= urE V-] e
i FeL, 1

\ :

(2.11)

This prescription becomes an algebraic identity whenever
we satisfy the relations

0
(O J— & £ 0] a+n €2
Ck+1 —Uk+1 + z Uk+1Fk+I+ij+I’
Jj=1

" (2.12)
BOP=LP+ S UL, o Fyr L, 1=12,.,
i=1
and the / = 0 requirements
M4—E=2 4 S UL F LY, k=0,,..
F, 7~
(2.13)

In the abbreviated notation, we may also write Eq. (2.12) as
a recurrent definition of U’s and L’s,

U =C 0 = Ul Fey iy Lay, (2.14)
Ll(cl)=Bl(cl)*Uz+l+1'Fk+l+1'L;<l]: I=..,21 '
Then, Eq. (2.13) will represent just a vectorial generaliza-
tion of the continued fractions (AS),

1/F, =4, —E U, 'F., ,'L,, k=.,210.
(2.15)
Thus, in analogy with (A9), the eigenvalue condition
det(H — E) = 0 acquires the simple VCF form 1/F, =0,
ie.,
E=A,— ULF L, (2.16)
In the original Schrodinger equation, the factorized op-

erator H — E or H*™ — E may be divided by its regular QUQ
part. This leads to the generalized Eq. (A10),

1/F, (O]%)
LY 1/F, (1]9)

=0 2.17
L (()2) L gl) 1/F2 ( )

with the numbers B, replaced by the VCF vectors L, . The

triangularity of the new matrix simplifies also the wave func-
tions in a way paralleling Eq. (A.11),

2¥)

0
0
, k=12, (2.18)
F.-L l(clll
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lll. AN ALGEBRAIC TRACTABILITY OF THE SPECIAL, ie., t; =s; =t>»1in (3.1). These restrictions still specify a
ASYMPTOTICALLY SMOOTH MATRICES ~# sufficiently broad class of Hamiltonians.

On an arbitrary fixed level of precision, we may always  A_The elementary factors

use truncations of the type Let us recall (2.11) and interpret each factor as a prod-

uct of ¢ two-diagonal matrices. For the sake of clarity, we
- (3.1) may also write
Csz(C;l),...,ij ,0,0,...), H—E=L +DL,

since the scalar products C7-B, (contributing to the matrix L=L,D\L,D, "L, D,, t<,
elements of H2) must converge. Moreover, in the spirit of =~ where D=D* and D; are diagonal, (L), =1,

B~ (B",...B{",00,.),

(3.3)

Appendix B, we shall assume that (L) m+1m #0,and (L;),,, = Ootherwise, i = 1,2,...,t. The
condition (3.2) may be combined with (3.3) in various
A=A, ,.,, B.=Ct =B, ,=Ct,,, k>k, ways. Here, we shall postulate that L, are asymptotically

3.2) constant and write

1 d* 1 d*_,
QH —-E)Q=0D?- 1 dr D!, 1 dy_, | D X
1 d% 1 1 ; |
»* 1 . 4 D -
X 1 dt|D 4 1 D,x---X 4 1 D,-Q. (3.4)

After a partial ordering of the (complex) parameters d;,
ldi|>|d; 4 1],

we may also setd; = Obeyond some fixed and finite index ¢t = /,,, (on any predetermined level of approximation). Moreover,
our “far-off-diagonal” truncation may be combined also with another approximation: @D, = const,...,QD,_, = const and,
possibly, QD = const. In such a case, we obtain a new representation of the operator Q(H — E)Q,

» e

—a* -
ay e — % af_y
@, —a,

e e e e
Q(H — E)Q~QD?| e” " &7 emt et x| O ° Q@ (3.5)

o, —a

e e

after a reparametrization of d; = exp 2a;. Here, all the dependence on indices is to be carried by the diagonal outer factors D,
and D *.
In the simplest # = 1 special case, we get the quasiconstant behavior of the Hamiltonian in its asymptotic tridiagonal part,

QH—-E)Q=QD¥ -+ 0 &' 2ch2Rea e %™ (o -.-ID,Q. (3.6)

In particular, we get the real and symmetric Hamiltonians

D* 'QUH—E)QD;[ '~ 1 2ch2a 1 = 121 ---)+4sh2a-1 (3.7)
for the real a’s. Similarly, we get the real asymptotics with # = 2,
H, —EbS,,~(D¥).m [(2 o n) + 4(sh? a, + sh? az)(1 e n) + 16 sh* @, sh’ a,5,,, ] (D)) ns, mn>M>1,

(3.8)

etc. The general formulas may be found elsewhere.’*

The ambiguity or symmetry between o; and — a; (or a; - — a¥, in general) will be removed later; in brief, it will be
shown to intertwine the physical and unphysical wave functions. Thus, in the physical case, we obtain the unique prescriptions
from Eq. (2.6). In particular, with # = 1, we get the effective matrix element
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H i — E=(D1)yym exp( —22), M>1 (3.9a)
from (3.7) or, in general,
HSE,, —E=|D |} exp( —2Rea), M>1 (3.9b)
from (3.6). Similarly, with ¢ = 2, we get
Dy (HT—E)D;'=PD;"(H—E)D;'P
0 0
0:---0, exp2(a,+ a,), 2 exp(a; + a,)ch(a; — a,)
0---0, 2exp(a, + a,)ch(a, —a,;), 4ch’(a, —a,) +exp 2(a, + a,)
=| -+ 4ch*(a,—a,;) +exp[ —2(a, +a,)], 2exp[ — (a,+a,)Ich(a; —a,) (3.10)

2 exp[ — (a; + a,)Ich(a, — a,),

from (3.8), etc.

B. The difference-equation technique

The Q-projected part of the Schrédinger equation (2.1)
may be rewritten in the form factorized in accord with Eq.
(2.5),

QUQOQLQ |¢) + QUQQOLP |) =0. (3.11)

Obviously, the regular factor QUQ is redundant here. More-
over, we may ignore the first £ rows (¢ < o0 ) and write

QLOIW =0, D= 3 |n)(nl,

n=M+1r+1
since QLPEO. Now, the (¢ + 1)-term recurrences (3.12)
are to be treated as a difference equation of the ¢ th order."
A complete factorization (3.3) of L converts Eq. (3.12)
into the asymptotic relations

(M + 1]¢)
ODL.D,---LD,Q| (M +2|¢) |=0.

(3.12)

(3.13)

After the simplification (3.5), the latter relations become
solvable in a closed form,

Mgy = 3 A, $=(—d)" m>M>l.
= (3.14)

For all H with ¢ different values of d; such that |d;|#1,
the ¢ independent solutions ¥. of our asymptotic Schro-
dinger equation (3.12) contain still the above-mentioned
d; — 1/d, ambiguity. The standard requirement of existence
of ¥(r) with the finite norm,

20 (Ylm) {m|y) < (3.15)

implies that we may remove the ambiguity via the sufficient
condition of convergence in Eq. (3.15),
|d;| <1,

i=12,.,t (3.16)

The boundary of the physical region with some |d;| =1
must be investigated separately.
In the above discussion, our use of factorizations is re-
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exp[ — 2(a; + a,)]

r

dundant. The & th row of the band-matrix Schrodinger equa-
tion

B (k—t|g)+B{=)) (k—t+ 1)
++CE k+t|Y)=0 (3.17)

may be directly understood as a difference equation of the
2tth order.> Its 2t independent solutions .7,
i= +1,+2,.., + t complement the set (3.14) simply via
the replacement d; — 1/d; for the negative super/subscripts
i. We may preserve the former notation and denote the Jost
solutions'® [compatible with (3.15)] by the upper positive
superscripts.

The physical parameters A; and E in (3.14) are to be
determined from the first M + ¢ 4 1 rows of the Schrodinger
equation omitted in our asymptotic subsystem of Egs.
(3.12). Vice versa, a variation of the submatrix PHP leads to
a change of these coefficients in general. Hence the last ¢
rows of the effective Eq. (2.3),

() j
BM—21+j'//M—2t+j+ +Bi(bll)—t¢M—t

+gj]¢M_;+1 +.'.+gj;¢M=09 j=132’--.,t,
(3.18)

must be satisfied by each of the ¢ independent Jost states
Ui, k>M —2t, i=1,2,..t In a compact notation with
the (¢ X¢)-dimensional matrices g=g,,, (b,,_,)y
=By*t5 P (M + 1=t,+ mt, cf. Appendix C), and

Xy = ¢k’}—2r+n Vi = '/’1[(}—:+i’ Lj=12,...1

we must satisfy, therefore, the matrix identity
b,_x+g,y=01ie,
gn= —b,_xy~\. (3.19)

This formula is very important: Our knowledge of a com-
plete system of Jost solutions becomes equivalent to an ex-
plicit knowledge of the effective Hamiltonian A*¥. Equation
(3.19) complements the previous MCF or VCF definition of
£,, and is in fact the most natural generalization of Eq. (2.7)
toallr>1.
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IV. SCHRODINGER EQUATION WITH POLYNOMIAL
POTENTIALS

A. The semirelativistic p—r symmetrization of the
Hamiltonian

A semirelativistic form or extension'
(T+ V)¢=E¢y V= zgirZi+2)
i=0
T= z’ hp¥*? = (¢* 4 pPct)V? — ¢ + O(p/c)?m=+*
j=o

4.1)
of the anharmonic oscillator equation (1.1) degenerates to
the exactly solvable harmonic oscillator for m, = m, =0.
With m, = m, = 2gq, it remains symmetric with respect to
the Fourier transformation p<>r. Here, it may be used as an
illustrative example of the asymptotically band-matrix

Hamiltonian since, in accord with Ref. 10, the asymptotical-
ly dominant part of H may be given the form

4q+2 )m2q+l
29+ 1+2m—2n

(o))

For the sufficiently large indices m and n, we may write

(T + V—E),,,,,z(

(4.2)

[ X )
T+ V__—E)’""~(q+m—n

( 2 — 21

q—l+m—n)’ (43)

+3 o

I=1

where

piP=4 pi¥ =8, pi¥=16/5,

pP =20, piP =48, p{¥=64/7,
etc.

In the first nontrivial example with ¢ =1 and recur-
rences (4.1),

¢n—1+13°¢n +¢n+1=0’ n>1 (4'5)

we may put ¢y '~ ( — d)" and obtaind = Jord = 3. In this
case, the auxiliary VCF quantities degenerate to the ordi-
nary continued fractions, and the finite approximants with
Fy, 1 =0 may be given an explicit form,
Fyoi-x=d[@¥*—-1)/d¥*+*-1)], k=0,1,...

(4.6)
This converges to the value d; = min(d,d ') that is always
smaller than 1. We observe a compatibility of the variational
truncation with our difference-equation requirement
(3.16).

In a straightforward way, the same analysis may be re-
peated for t =g > 1 as well. For example, the ¢ = 2 recur-
rences (4.1),
¢n—2 + 12¢n—1 + 25'2¢n + 12¢n+ 1

+ '/’n+2 =0, n>l,
may be solved by the ansatz (3.14) which gives®

dy=1/d_, =5d,=5/d_,=5—25=0527 (4.8)
in an elementary way.

44)

4.7
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For a general value of ¢ = ¢, the VCF convergence be-
comes less transparent. A basic idea of its analysis'® may be
visualized as follows. First, we recall the partitioned nota-
tion of Appendix C and definitions

a, —E=hysi + 1l it b =Rty s

Chkr1 = lk+ 15k +1
of the (¢ X t)-dimensional matrices entering the VCF/MCF
mapping g, . (= A, 5, 1) —8& (C5). By means of an
ansatz

8 =heSi + 1 Prtiic 1 (4.9)
we convert these recurrences into an equivalent prescription

Px =V1Pr 1/ (1 +pPi 1 )72

N=hililiss V2=t ia/Sk1s P=720
(4.10)
Now, assuming that the & dependence of all the matrices is
sufficiently weak here, the VCF/MCF convergence may be
reinterpreted as a convergence of iterations of the mapping
(4.10) performed at a fixed index k3> 1. We may employ a
spectral representation of the auxiliary matrices

=Y ledelel, =3 |elele]

€,€0, €,€0,

(4.11)

and denote their maximal eigenvalues by a zero superscript.
Immediately, we may notice then that the repeated multipli-
cation of p’s by ¥’s in (4.10) suppresses all the components
not corresponding to ¢; = €%, i = 1,2.

For the simplest case with the nondegenerate spectra ®,
and unique values of €{%, i = 1,2, a sufficient number of iter-
ations in (4.10) converts the dominant component of p, into

a separable expression,
P = |€9)x, (€| + corrections. (4.12)

Vice versa, an insertion of (4.12) changes the VCF/MCF
mapping g, , | =8 Of P, —P; into an approximatively

one-dimensional mapping »; , , — %,
— ~(0) (0 0) (0 4] 0
x = €06 % 1 /(1+€767(” 61", 1) (4.13)

with an easy analysis of convergence.

B. Effective Hamiltonians in the nonrelativistic case
The nonrelativistic # = 2 analog (1.1) of Eq. (4.7),
¢n—2 +4¢n—1+6¢n +4¢n+1+¢n+2=0 (4-14)

leads immediately to a quadruple leading-order asymptotic
degeneracy’ d; = 1, i = 1-4 of the Jost solutions (3.14).
This result is easily generalized to any . Indeed, from the
initial values

Ayi1=Ay,==0,
By=By,  ,="""=Cy,,=""=0 (4.15)
B}&‘_l=BE'_2='“=C“'—'“=0. M>1

we obtain, after a reasonable amount of the algebraic mani-
pulations, the sequences
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F _kk+ 1) (k+t—1)(1 +O/M))
M=k ™ k4 ) (k+t+ 1) (k+2—1)

N
UM+l—k

=(t) (k+t+pk+t+j+ D) (k+2—1)
J k+)k+j+ 1) (k+1—1)

k
x(1 0(_)), =12t k=12,.,
( A VY7) (4.16)

i.e., a rigorous solution of the VCF recurrences (2.14) and
(2.15) in the asymptotic region.
In contrast to the pe>r symmetric equation (4.1) with

[{n + 1|¢)/(n|t//)|zn}¢ja|1xld,-| <1, n>l, (4.17)

our present degeneracy of asymptotics need not be consid-
ered as a shortcoming. In fact, we may write

(n|$) = (—1)"exp§,, (4.18)
where £, should be some asymptotically smooth function of
the index n. Its important merit lies in a possibility of insert-
ing the Taylor series

exp£, ., =expé, +k%exp§n 4o

=exp &, (1+KE, +AK*ET+ED + )
(4.19)
in the left-hand side V' |¢) of equations of the type (4.14),
OV |¢) = 0. Then, whenever we replace the right-hand side
zero by the leading-order estimate of the kinetic energy con-
tribution — T |¢) =44, , n> 1, we obtain an estimate of £,
or

£l ~constXn! =P n31, (4.20)

in accord with Ref. 11.

In the next step, we may notice that all the corrections in
(4.19) are given as derivatives of £,. An inclusion of the
precise matrix elements of H may only modify and convert
Eq. (4.20) into a series

L
Er=3 B.p"+ 0", p=n"""<1, (421)
m=1

where, in accord with Eq. (4.20),

Bi=-=B8,_,=0, B,_,#0. (4.22)

In analogy with the Jost solutions pertaining to the
Hamiltonians with the nondegenerate parametrization
(3.5), our present expansion (4.21) may also be used as an
ansatz. It transforms the asymptotic anharmonic oscillator
Schrddinger equation [say, Eq. (3.17) withk =#n3» 1] intoa
power-series requirement of the implicit general form

S PR (ELgss8:B1B2--) =0.
k=0
Due to a linear independence of the powers of p, the condi-
tions
R, =0, k=0,1,.., (4.24)

are to be solved as a nonlinear algebraic set of coupled equa-
tions for the coefficients 3; in (4.21) or (4.18) and (4.19).

(4.23)
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1.t=2

Let us start our analysis from the simplest nontrivial
quartic oscillator problem (1.1) with ¢ = 2. Performing the
algebraic construction of the functions R, in (4.24) on the
computer (in REDUCE), we find that the first four items are
identically zeros. This reflects the asymptotically correct be-
havior of our ansatz (4.18). From R, = 0 we obtain

1= —4/g, (4.25)

In full analogy with our preceding discussion, the four inde-
pendent complex roots B {” of this equation with
Jj= +1, + 2 comprise also the physical Jost coefficients

B =(—1xi)|g; . (4.26)

Similarly, the further items of Eq. (4.24) remain linear in the
unknown coefficients and determine the respective sequence
of their values

B2=0’
Bi=31+0DU—g)|es >,
B4= - 5,

Bs=xk(1FDH(E+21+3)g,
+ 4+ D> — 4] 1e5 ¥,
B6= (:Fl/32)(3 —gl).lg{ l/zl’

(4.27)

Up to a misprint in B and missing B, they agree with the
g, = 1 results of Ref. 11, i.e., with the wave function asymp-
totics

V'=(=1"" " exp(§B {"n¥* + 48 n'"*)
Xexp(— 48§ n— 14— 280~ 172
+0(n*%), j=1.2, (4.28)

tested and verified numerically for g, = 1. Of course, such a
choice simplifies also the higher-order coefficients here,

ﬂéj’=353§j)2,
B =hB M (—4a?+5a+IE+ 1Y), a=4+}
Be=jia—HE+3,
B§ = 3B {"(11a> + Ja(10E — 21)
— &(3E? - 3E + 8%)),
Bi§ =B (—3a + 31 —E+ D),

(4.29)

2 t=3

In the sextic anharmonic oscillator example (1.1) with
g: =1 (scaling of the scale) and ¢ =3, we may proceed
along the same lines as above. After confirming Eq. (4.22) as
a consequence of (4.24) at k<6, we obtain the first nontrivial
algebraic equation R, =0at k = 12,

B =4/g,. (4.30)

We may specifiy the Jost roots 8 {7, j = 1, 2, and 3, by the
simple condition

sgnReB P, = —1, j=12,.,t. (4.31)
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In the forthcoming steps, we obtain the zero odd coefficients
Bs=Bs=B;=B,=0,

and the nontrivial contributions
B = jeB
B =4[ —16+ (—1+g5/48)8 "],

LTL s (4.32)
h__t j
T [—6‘&'9 2

to the physical wave functions

iy =3 (= rap?

J=1

350G g
xexp| — B n?3 4+ 2 nl/3
p(2B2 2351)33
xexp(— 38 {’n~ 12+ 0(n=%?), n>l.
(4.33)
3. t=4

A knowledge of the first few solutions with increasing ¢
simplifies the manipulations in REDUCE—we may incorpo-
rate there immediately the relations (4.22), formula

X o=(=D" /g (4.34)
derived in the second paper of Ref. 11 and further hypoth-
eses inspired by the similarities of the preceding solutions.
We must be careful, of course. In particular, the octic oscilla-
tor analog

V= (= 1) exp(3 B {"n%/® + 4B Pn/®

+ &3 ;i)nlls exp( _ 8B S()j)n——lltl + O(n—l/4))’

ny»l, t=4, (4.35)
of (4.33) or (4.28) shows that an assumption 83 = 0 is not
correct. In detail, Eq. (4.24) with k = 24, 26, 28, 29, 30, etc.
leads to the respective sets of coeflicients
B gj) — ( _ 4/g4)”8,
B = — g, B,

. . 5 g§) ; 11
D= 1B (Mg, ——22) BN= 4.36
B 53 (gz 16 2, 8 16 ( )
. 1 4 4 3gg 11g3 )
(N — w3 3
=— —— g2 )
Bs As ( 3 8g,  128¢

32

with the scaled coupling g, = 1 again. These formulas are
very suitable for an analysis of the various kinds of limits, but
this is beyond the scope of the present paper.

1 C,F,
H-E= 1

1/F,
GF ) 1/F,
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V. SUMMARY

One of the most efficient numerical approaches to poly-
nomial interactions is known to be a diagonalization in the
standard oscillator basis. In a quasiperturbative, less nu-
merical setting, this technique has recently been shown e-
quivalent to a systematic algebraic construction of the MCF
fixed-point approximants. Here, we have succeeded in solv-
ing the corresponding nonlinear systems of algebraic equa-
tions in a non-numerical manner. Up to the octic anhar-
monic oscillators, the explicit asymptotic-series representa-
tions of the effective Hamiltonians have been obtained.

Methodically, the two aspects of the technique deserve
special attention. First, a similarity in structure of the as-
ymptotically degenerate and nondegenerate Hamiltonians
has been recovered. Conceptually, this makes the whole
method extremely simple. The present constructions illus-
trate also its purely pragmatic efficiency.

Second, the underlying factorization has been given a
“final” form—its vectorially partitioned character does not
necessitate any sparse-matrix assumption anymore. In this
sense, we believe in its further methodical development,
especially via the various straightforward extensions of the
underlying ansatz.

APPENDIX A: TRIDIAGONAL HAMILTONIANS AS A
METHODICAL GUIDE

At the very beginning of the standard Lanczos numeri-
cal tridiagonalization of H, we have to pick up an arbitrary
trial vector |0). Then, by means of its repeated multiplica-
tion by the operator H, we may generate the basis,'?

1) = (1/Bo) LH[0) — [0 4,),

lk+ 1) = (1/B) [H k) — |k )4,

—k=1C), k=1.2,... (A1)
The natural condition of orthonormality
0, ms#n,
(m|n) = 1, m=n>0, (A2)

determines all the coefficients in (A1) uniquely.
The operator H becomes represented by the tridiagonal
matrix

AO Cl
B 4, G
H= 5 4 C (A3)

-
-
-

in the basis (A1). As a consequence, we may introduce the
factorization (2.5),

(A4)
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where the auxiliary quantities F, have only to satisfy the
recurrences

1/F, =Ay —E—Cy, \Fe, 1B, k>0. (AS)

Formally, this enables us to rewrite the secular determinant
in the factorized form

det(H — E) = ( i Fk>_ )
k=0

In the computational practice,'’
truncation of H,

Ay i1 =Ayr="=0
'=0, BN="'=0, N<l-

In the limit N— oo, this leads to the results equivalent to an
exact solution. In the present setting, this simplifies also an
interpretation of recurrences (A5)—wemayuse Fy, ;, =0
as an initial value and identify the quantities F, with the
analytic continued fractions,'®

F,=A, —E—-C \B./(Ay .1 —E—-))"". (A8)

For an arbirtrary finite cutoff parameter N < o, the
Schrédinger equation (1.1) possesses a nontrivial solution if
and only if det(H — E) = 0. Here, we may compare Egs.
(AS5) and (A6) and see that the binding energies will coin-
cide with the roots of the analytic continued fractional
“Green’s function” 1/F,,

E =A,— C,F,(E)B,. (A9)
Moreover, we may also omit the regular factor from Eq.

(1.1) and, noticing that the first row of the resulting new
form of our Schrodinger equation

(A6)

we employ usually the

(A7)

Cvir=""

1/F, Ol¢)
B, 1/F, Mg | _ 0 (A10)
0 B, I/F,

Q2|

becomes satisfied identically [cf. Eq. (A9)], we obtain an
explicit continued fractional formula

(k|¢) = —F B (k—1]$)

_(_l)kHB

This defines the bound states.

41 0[9). (A11)

APPENDIX B: THE FIXED POINT EXPANSIONS

In practice, a continued-fractional convergence N —
is usually very quick. This may easily be understood as a
consequence of the weakening k dependence of the mapping
F, ., —»F; (AS) for the increasing indices > 1. Under such
an assumption (summarizing in fact just the numerical expe-
rience), our knowledge of the large number of quantities
Fy Fy_ 1 ysFy 4 1 ,Fy becomes redundant. Indeed, a weak &
dependence of F;.’s for k> 1 implies that we may expect that
F, ., =F, may be approximated by a “fixed-point” root

F 9 of the simple quadratic equation

1/FP =4, —E—C,, F?'B,, k>O0. (B1)
An ambiguity of this definition may easily be removed by
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means of the stability criterion—the physical root of (B1)
becomes unique.

In accord with Eq. (A9), the quantity 1/F, (or, in gen-
eral, 1/F, ) may be interpreted as a component of the Fesh-
bach effective Hamiltonian.®® In a perturbative spirit of Ref.
7, we may also study the corrections

F{V=F, —F"

Indeed, when we rewrite Eq. (AS) in a new form
1/(F(1)+F[0])—Ak_E Ck+1(Fl(cl-4)—1 ;co-l—l)Bk’
(B3)
we may subtract the definition (B11) and eliminate, say, the
parameters 4, — E,
(VFPYFP[1/(FP +FM)]
=Cri1 (Fl(cl-z—l +Fl[co—]+—l —FIICOI)Bk'

This may be rewritten as a new rational mapping

(B2)

FP=(afP +BF) /(Y —F2 ), k=0,1,.
(B4)
with the k-dependent parameters
a(l)=F[0](F[O] _FIO]) B(1)=F§(0],
v’ = (BiCrp1) (4, —E) —FQ | (BS)

= (FP'BC )"+ FP—F,

Obviously, the subtraction of the type (B2) may easily
be iterated. First, we have to specify the higher-order fixed-
point approximants F |*! as the roots of the generalized Eqs.
(B1),

F}("] (")+,B(")F["])/(7/(”) Fl[cn])’ n>1. (B6)

Next, we notice a uniqueness of the definition (B6): one of
the roots represents just a return to the solution discarded in
the zero-order equation (B1). Thus assuming that the itera-
tions

F,=FO 4 Fl ... L Flrl L Fin+D (B7)
converge, the smallest roots of Eq. (B6) may be treated as
“physical.”

In a way analogous to the derivation of Eq. (B4), we
may rewrite Eq. (AS) in the equivalent form
(a(n+ 1) +B(n+ l)F£n++11))/(7/§cn+ 1)

—FAY), kn»0. (B8)

This completes our fixed-point (FP) construction of the
new expansion (B7). Indeed, we obtain the recurrent defini-
tions of the relevant coefficients

F('I+1)

A, —E n
7,(n+1) y(")—F["] — _ F[m] ,
S BG,
a,((n+l) =al(cn) +B§Cn)F;cnil —1’§("+1)F;¢n]
= 3 3 FiFD,
m=01I1=0
+__1___[1—(Ak—E) S Fim,
B, Cp i m=0
B =B +F'= 3 Fi™ (B9)
m=0
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valid for any fixed FP order » and variable index . In the These relations enable us to prove or analyze the conver-
large-n limit, we get gence of the FP alternative (B7) to the continued fractional
expansion (A5) in detail. Their generalization to ¢> 1 is

B —F,, 7B F.Ci,1)”", a®-0. (B10) straightforward. It may be found elsewhere.”'®

J

APPENDIX C: THE VCF/MCF EQUIVALENCE FOR t< o
For the (2t + 1)-diagonal matrices

AO Cgl) CY) 0 0
H=}{0 -- 0 B{P, c¥ 0 0 |, N<ow, (C1)
o - 0 By ., BFZ!L, -+ BYy)L, Ay
a block-tridiagonal repartitioning may be introduced,
a, ¢ O - 0
b, a c 0 0
H=|" ' 7 , nt+ty=N+1, (C2)
o --- 0 b,_, a,
with the (#; X1, )-dimensional submatrices a; and 7,<t, =, = ‘- =t. Then, the VCF factorization (2.11) may either be
partitioned,
ho 1 So
hy L U, 5 .
H-E= . X .. , dimh, =1, (C3)
h, u, S,
or replaced by the new form of the general decomposition (2.5), namely, by the formula
T o fi 1/fy I
I ¢ 1/f, by, I
H-E= S b x|/ . L n<w. (C4)
I /1, Sobo_ 1
The related recurrences
I
1/_f;c =ak _EI_ck+lfk+lbk’ k=n,n— 1,...,0, York, 1980).
(C5) 4J. Makarewicz, J. Phys. A 17, 1461 (1984), and references contained
therein.
define simply the (¢ Xt)-dimensional generalization of the 58, Graffi and V. Grecchi, Lett. Nuovo Cimento 12, 425 (1975).
continued fractions® in the limit N— oo. jlls\dd Znoji}, J. Phy;- 1;36, 3351 32; 1983).
. : s . Znojil, J. Math. Phys. 25, 2979 (1984).
A comparison of Egs. (C3) and (C4) implies that SH. Feshbach, Ann. Phys. (NY) 5, 357 (1958).
fo=(s )Y, k=nn—1,.0, °A. H. Wilson, Proc. R. Soc. London Ser. A 118, 617 (1928).
(C6) 19M. Znojil, Phys. Rev. D 24, 903 (1981).
b1 =hpttyy, Cp=1ps,, m=12...n, M. Znojil, K. Sandler, and M. Tater, J. Phys. A 18, 2541 (1985); M. Zno-

" : . jil, Phys. Lett. A 114, 349 (1986).
so that the MCF quantities become defined uniquely in 2C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).

terms of their VCF countel.'pa.rts. Whenever we require that, 13A. Duncan and R. Roskies, Phys. Rev. D 32, 3277 (1985).
e.g., (s,,); = 1, the opposite is also true for a broad class of M. Znojil, J. Phys. A 16, 4001 (1983).
Hamiltonians. '*N. E. Norlund, Vorlesungen u. Differenzenrechnung (Springer, Kopenha-
gen, 1923).
'8M. Znojil, J. Phys. A 17, 1603, 1611 (1984).
'7F. Acton, Numerical Methods that Work (Harper and Row, New York,

IS. Fliigge, Practical Quantum Mechanics (Springer, New York, 1971). 1970).
2C. Quigg and J. L. Rosner, Phys. Rep. 56, 167 (1979). 8H. S, Wall, Theory of Analytic Continued Fractions (Van Nostrand, New
3C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1948).
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For Schrodinger operators with central potential g(r) and angular momentum /, the behavior
of the Jost function F; (k) as k—0 is investigated. It is assumed that f&dr (1 +7)? |¢(r)| < o,
where o> 1. Situations where g is integrable with 1<o < 2, but not with »2 are of particular
interest. For potentials satisfying g(r) ~gor =2~ ¢ (0 <e€<1) and / = 0, the leading behavior of
Fo(k) and the phase shift §,(k) as k—0 is derived. Also comments are made on the
differentiability properties of the Jost solutions with respect to the variable k at ¥ = 0. For

o = 1 Levinson’s theorem is proved, thereby clarifying some questions raised recently by

Newton [J. Math. Phys. 27, 2720 (1986)].

I. INTRODUCTION

In this paper we study the low-energy behavior of Jost
functions and phase shifts of the three-dimensional Schré-
dinger equation with central potential g(r)eL !, where

(LD

Ll = {q f (1+r)%g(r)ldr< o, a>l.}
0

Our main concern are potentials that are in L} with
1<o <2, but not necessarily in L }. We were stimulated by a
recent paper of Newton' on this subject and in particular by
one result which we recall here briefly. Let F; (k) denote the
Jost function corresponding to angular momentum /
(I1=0,1,2,...) and assume thatgeL | with 1<o<2if/=0o0r
1<o <3ifI>1. Then Newton proved that

Fi(k) =F;(0) +o(k°™"). (1.2)
So, if F, (0) = 0, then it is consistent with (1.2) if
Fi (k) =ak®+o(k®), a#0, (1.3)

for some ¢ >o — 1; this implies that Levinson’s theorem
takes the form

8,(0) —6;(0) =mw(n, +a/2), (1.4)

where 8, (k) denotes the ] th phase shift and », is the number
of negative eigenvalues for angular momentum /. Thus, if
as#£1(I=0)ora#2 (I>1), wewould get amodified Levin-
son’s theorem. However, we should be aware of the possibil-
ity that if we simply treat (1.3) as a special case of (1.2} we
may miss some information that specifically pertains to the
case when F, (0) = 0. Indeed, it is known that if geL | and
F;(0) = 0, then wealwayshavea = l when/=0anda =2
when [ = 1. A proof for / = 0 (and a hint of how to proceed
when />1) can be found in the work of Marchenko? (for
! = 0 a proof also follows from Ref. 3, Appendix I). Regard-
ing (1.2) this leads to the question of whether the given error
estimate is optimal for the class L} and of how the large-r
behavior of g(7) is reflected in the small-k behavior of F, (k).

The paper is organized as follows. In Sec. IT we explain
the notation, collect some preliminary material, and state
Lemma (2.1), which is needed in the later sections. The
proof is given in the Appendix.
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Section I11 is devoted to the special case of inverse pow-
er-law potentials satisfying q(r) ~gor 2~ ¢ as 7— o with
0 <e<1. For /=0 we obtain the leading behaviors of the
remainder terms in (1.2) and (1.3) [see Theorem (3.1)].
This entails the leading behavior of the phase shift [see Cor-
ollary (3.2)] and extends, for / = 0, previous results found
by Keller and Levy,* who assumed € > 1. There is a corre-
sponding conjecture in the paper of Keller and Levy (Ref. 4,
p. 59), but with the additional restriction that ¢ be repulsive.
We shall see that ¢ can have arbitrary sign. Furthermore, we
also consider the case when F,,(0) = 0, which was not done
in Ref. 4. It seems conceivable to us that results similar to
those of Theorem (3.1) and Corollary (3.2) can be derived
for arbitrary / (Keller and Levy also allowed /> 0), but we
have not checked the details. As a by-product of the analysis
of power-law potentials we obtain precise information on the
differentiability of the Jost solution f(k,r) with respect to k
at k =0 [see Corollary (3.3)]. This result clearly demon-
strates why the Jost solutions cause problems in the analysis
of Fy(k) if 1<0 < 2, afact that was also recognized in Ref. 1
(see Appendix C).

In Sec. IV we analyze the small-k behavior of F, (k)
when F,(0) =0 for arbitrary potentials with 1<o<?2
(I=0) or 1<0o <3 (I>1) and we obtain Levinson’s theorem
for o = 1. Our proof makes essential use of Lemma (2.1),
which allows us to bypass the differentiability problems as-
sociated with the Jost solutions. In fact, if Jost solutions are
used (following the basic reference 5), then the stronger
condition geL } seems to be unavoidable. This may have led
to the wrong impression that this condition is actually neces-
sary (Ref. 6, p. 23). Other recent proofs,”® based on Stur-
mian arguments, also require that ~g(7) be integrable at
infinity® or that ”’q(r) —~0asr— o [in Ref. 8 the special case
g(r) ~gor~?is also considered]. For a review of the subject
see Bollé.® As already mentioned, the proofs in Refs. 2 and 3
work for o = 1, but they are based on the Marchenko equa-
tion (and on an inductive argument with respect to / when
I>1). Our proof is more direct in the sense that it is a refine-
ment of Levinson’s original proof,'® which needed o = 2 at
various places. Moreover, our method allows us to control
the error terms.
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At the end of Sec. IV, we remark on how our results tie
in with the threshold behavior of the eigenvalues’"'? when
they are born from the continuous spectrum as the coupling
constant is increased.

Finally, we mention that the methods and results of this
paper have extensions to the Dirac equation' and the Schro-
dinger equation on the line." In the latter case we can, for
example, prove continuity of the S matrix at k = O for arbi-
trary potentials satisfying a L } condition on the line.

Il. PRELIMINARIES
We consider the Schrodinger equation
=y + U +1)/Ply+q(ry=k?%y (I=0,1,.).
(2.1)

We always assume that k>0, except in Sec. IV, where we
need Im k>0 in connection with Levinson’s theorem. Let
¥, (k,r) denote the solution of (2.1) satisfying the boundary
condition

yi(kry~rF+', as r-0. 2.2)
Then y, solves the integral equation
yl(k;r) =y1[)(k9r) - f dtg:(k,’,t)Q(t)}’l(kJ), (2'3)

0
where
Vo (r) =T +3)(k/2)~'=V21120, \, (kr), (2.4)
g (krt) =4 (rt) 20, 1, (KR Y, 0 (KE)
=1 (RO Y, (kD). (2.5)

Here,J,, ,,, and Y, ,, are the usual Bessel and Neumann
functions and y,, satisfies Eq. (2.1) with ¢ = 0. The Jost
function F; (k) is defined by

-1
F,(k)=1+i72"‘3/2k’+‘/2(1"(l+ _;_))

xf drr*?q(r)H '), (kr)y,(k,r), (2.6)
0

where H{") ,=J, ., +iY, ., denotes the Hankel
functions.
Moreover,

6,(k) = —arg Fy (k). 2.7

The zero-energy solution y, (r) =y, (0,r) will play an impor-
tant role in this paper. Its main properties are the following:
»:(r) is bounded at infinity if and only if F;(0) =0 and in
that case it obeys

(@) ~A4r~', roco, (2.8)
where
1 (-3
1= = T IJ; dr? *'q(r)y,(r) #0. (2.9)
Combining (2.2) and (2.8) we see that
(P ]|<CP (1 +r) -2 (2.10)

Here and subsequently C will denote various constants, al-
though not necessarily the same at each appearance. If
F;(0) #0, then y, (r) is unbounded and
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() ~Dr !, row, (2.11)
where
1 ® -
D=1+ T L drr='q(r)y,(r). (2.12)
Moreover,
D, =F,(0). (2.13)

Also, notice that y, is square integrable precisely when
F,(0) = 0and! #0. The above properties follow easily from
the integral equation (2.3) and from (2.6). See, also, Ref. 1.

For our later proofs we need bounds on the difference
yi(kr) —y,(r).

Lemma (2.1): Suppose that geL }.

(i) If 1 =0, F,(0) #0, then

[volk,r) — yo(r)|<Csrlkr/(1 + kr)]® (2.14)
and if F;(0) = 0, then

Wo(k,r) — yo(r)|<Cs Lkr/ (1 + kr)]°, (2.15)
where 0<6<2.

(ii) If 151, F,(0) = 0, then

v, (ksr) — y, (1) |<CE2[r/1 + kr)]' + 1 (2.16)

For a proof, see the Appendix. Notice the absence of the
factor 7in (2.15) as compared to (2.14). In Sec. IV we need
to use a second, linearly independent solution , () of (2.1)
for k =0 if I>1, F;(0) = 0. We choose 7, such that y,;
—yiy; = 1. Then

J(r)~A4,P Y, row, (2.17)
where

(2l +1)4,4, =1 (2.18)
and

Ji(n~—=[1Q2 +1)]r Y r-0. (2.19)
Hence

F () |<Cr='(1 4+ r)¥ + 1. (2.20)

Equations (2.17) and (2.19) follow easily from the repre-
sentation

Ji(r) =y, (r) f dry;2(r) + pyi(n),

where r, is at our disposal and p; is a suitable constant (de-
pending on ry). The asymptotic relations (2.2), (2.8),
(2.11), (2.17), and (2.19) may all be differentiated.

IIl. THE CASE g(r)~gor =, 0<e<1 (/=0)

Theorem (3.1): Suppose that, as 7 — o, g(r) ~gor 2~ ¢
O<e<1.

(i) If0<e < 1, Fy(0) #0, then, as k-0,

b

Fo(k) = Fy(0) + age~ “YP™F,(0)k € +0(k€), (3.1)
where
o= —go2(e(e + 1))"'T"(1 —¢). (3.2)

(ii) If0< € < 1, Fy(0) =0, then, as k-0,

Fo(k) = —ikAy + idgage = “Pm2—ke+1 4 o(kct1).
(3.3)
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(iii) If e = 1, then, as k-0,

Fy(k) = {FO(O) —igoFo(MkInk +o(kIn k),

FO(O) #O)
— ikAy + (A4/2)gok 2 Ink +0(k2Ink), F,(0)=0.

(3.4a)
(3.4b)

Relation (3.1) shows that in any class L, 1<o <2, we can find a g such that F,(k) — F,(0) vanishes like x°~'+% with6>0
as small as we wish. In this sense, when F;,(0) 50, the remainder estimate in (1.2) is optimal. Theorem (3.1) has the following

implications about the phase shifts.

Corollary (3.2): Under the assumptions of Theorem (3.1), if 0 <€ < 1, then

5.(k) = [aok‘sin(ﬂ'e/Z) +o0(k€), Fy(0)+#0,
0 /2 — a2~k € sin(me/2) + 0(k€), Fy(0) =0
and, if € = 1, then
5,(k) = {qoklnk +o(kInk), F,(0)##0,
/2 — (q/2)kInk +o(kInk), F,(0)=0.

These relations are all understood to hold mod (7). Corol-
lary (3.2) follows from Theorem (3.1) and (2.7).

Proof of Theorem (3.1): (i) F,(0)#0, O<e<1. We
break the integral in (2.6) into three parts:

Folk) = Fo(0) + f dr(e™ — 1)g(rye(r)
0

+ fo dr g potkr) —po(P),  (3.7)

where we have also used (2.12) and (2.13). We denote the
first integral on the rhs by J, and the second by I,. Consider-
ing I, it is easy to show that the leading behavior of I, as
k—0is determined completely by the asymptotic forms for ¢
and y, as r— . On substituting Dy for y, and g,r —* < for
q(r) and changing variables, ¥ = kr, we obtain

I, =k‘Doqof du(e® — )u-'"<4o(k). (3.8)
0

Next we consider I,. For / =0, (2.3) reads as

sin kr

Yolk,r) = P’

+ %f dt sin k(r — t)q(t)y,(k,t)
0

(3.9)
and

yo(ry=r+ f dit(r — t)q(t)yo(1). (3.10)
0

From this we deduce that

_ 1)(1 + f dtq(t)yom)
(¢}

J- dt (cos kt — 1)g(2)yo(8)
0

Yolk,r) — po(r)

_ r(sin kr
kr

sin kr
k

+
_ 71; (coskr—1) J. dr sin ktq(8)y,(2)
0
- -l—f dt(sin kt — kt)g(t)ps(2)
k Jo

+%f dt q(ysin k(r — D (Fo(kit) — yo(D)).
° (3.11)
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(3.53)

, (3.5b)

(3.6a)
(3.6b)

R’Ve denote the five terms on the rhs by 4,(k,7),...,A5(k,r),
respectively. Upon inserting 4, (k,7) into the expression for
I,, we see that

ch dre™q(r)A,(k,r)
0

=k€D0qof du e"“(ﬂl-l——li — l)u“'1 +o(k*).
(4

u
(3.12)

Next we estimate 4,, 4;, and A4,. Let Be(€,2¢€). By using
elementary estimates we deduce that

|4, (k,r)|<Ck Pr' +B/2f dt |g(8)[tP72|pe(2)|
0

<CkPr'+h72, j=2734, (3.13)
on account of the linear growth of y,. This, in turn, implies

<CkP?, j=234. (3.14)

f dre*q(r)A; (k,r)
0

The term A5(k,7) is estimated by using (2.14) with§ = 83, so
that

|A5(k,r)|<CkBr‘+B/2f dt|q(t)|e'+A2
0
and thus

<Ck”®. (3.15)

f dre*q(r)As(k,r)
0

Thus the contributions from A, through 4, to I, are o (k¢).
Adding (3.8) and (3.12) and computing the remaining inte-
gral yields the second term on the rhs of (3.1).

(ii) Fy(0) = 0,0 <€ < 1. We again use (3.7). Since now
¥, is bounded at infinity, we obtain, using (2.8) and (2.9),

I = —ikdy+ k< 'Ag,

f du(é®—1—i)u="24okc*!). (3.16)
(1]

In this case, however, 4,(k,7) does not contribute to the
k¢*! term. In fact, since D, = 0, we can write

- 1)_[ dtq(ye()  (3.17)

sin kr
r

A (k) = — r(
and thus
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|A1(k,r)|<Ck yrl/2+y/2J- dt lq(t)|t1/2+r/2|yo(t)|’
’ (3.18)

where 1 4+ € < ¥ <min (2,1 + 2¢), so that the contribution
of A, to I, is O(k”). Also, we have

|Aj(k,r)|<Ck yrl/2+r/2f dt |q(t)|t l/2+'r/2ly0(t)',
0

j=234, (3.19)

and a similar estimate for 45 in view of inequality (2.15)
with § = y. Thus the contributions from 4, through 45 to I,
are O(k”) =o(k*'). Evaluating the integral in (3.16)
yields (3.3).

(iii) If e = 1, F,(0) #0, then

I, = —igyDokInk +o(klnk). (3.20)
Moreover,
j dre*q(r)A,(k,r)
0
~Doq0kf dueTEZE _ o). (3.21)
o u

The contributions from 4, through 45 are O(k?), Be(1,2).
Remembering (2.13), we arrive at (3.4a). If F,(0) =0,
then

I, = —ikdy+ (Ay/2)qck*Ink +o(k*Ink). (3.22)

In the estimates for 4; (j=1,..,5) we may, of course,
choose y=14+€=2 [see (3.18)] and we see that
I, = O(k?), whence (3.4b). Theorem (3.1) is proved.

Next we turn to the differentiability properties of the
Jost solution f;(k,7) at k = 0, where £, (k,r) denotes the so-
lution of (2.1) defined by the boundary condition

lim e~ *f,(k,r) = 1.

Corollary (3.3): Assume that g(r) ~gor "2~ ¢ as r— o,
0<e<1 (go#0). Then f,(k,r) is differentiable at k=0 if
and only if £;(0,r) = 0.

Proof: For any r = r,>0 we have

(3.23)

Solk,ry) = €™ + f dt e*q()y(k,t;ry), (3.24)

where y(k,r;r,) solves (2.1) for r>ry with y(k,ry;ry) =0,
' (k,rg;ry) = 1. The integral (3.24) can be analyzed in the
same way as the integral (3.7) and we obtain the analog of
Theorem (3.1) with respect to the interval 57, In other
words, fy(k,r,) is differentiable at k=0 if and only if
Jo(0;ry) = 0, which is the assertion of Corollary (3.3). Un-
der the stronger assumption that geL ;, we know that
Jo(k,r) is continuously differentiable with respect to k at
k =0 for any r.!

IV. THE CASE F,(0)=0, LEVINSON’'S THEOREM, AND
THRESHOLD BEHAVIOR

Here we prove the following theorem.
Theorem (4.1): Suppose that geL | and that (i) /=0,
Fy(0) =0, 1<o <2, then, as k-0,

Fy(k) = —idok + 0(k°); (4.1)
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or (ii) I>1, F;(0) =0, 1<o < 3, then, as k-0,
Fl(k) =Clk2

+ o(k°tY), 1<o<3, I32orlo<2, I=1,
O(k3), 2<o0<3,1=1,
(4.2)
where
c _ |[y,||2 - _ (3F,/6z1)(0;1)|[y,||2
! (21 4+ 1)4, (gy1)
(4.3)

Here and subsequently ( , ) denotes the L ?inner product and
|| || denotes the L 2norm. In (4.3) F; (k;A) is the Jost function
for (2.1) with g replaced by Aq (A€R). The second equation
in (4.3) allows us to establish the connection with the
threshold coupling constant behavior of the eigenvalues (see
below).

Proof: (i) For I = O we need only look back at the proof
of Theorem (3.1), Eq. (3.7). We have

I, =idk + fm dr(e* — 1 —ikr)g(r)yo(r). (4.4)
0

The integrand is O(k?) and dominated by
Ck?r”|q(r)| [yo(r)|; hence by dominated convergence the
integral is 0(k“ ). Thus
I,= —idk +o(k°).
From (2.15) withé =0,

1<Ck°rd ( 4 )a,
iml<cke [~ argn (1

so again by dominated convergence [since y,(k,r)
— yo(r) = O(k?) for fixed r},
I 2= O(k 0‘) .
This establishes (4.1).
(ii) The case when /> 1 is complicated by the fact that

part of the leading contribution comes from the analog of I,.
We begin by splitting F; (k) as

(4.5)

(4.6)

Fi =ak! = [ dr g H 12 )
—Hfﬁl/z(k’)))h(r)
+ak! 12 J: drr'’?q(r)(H ") 5 (kr)
— HY s k)3 (kr) — p,(r))
+ak! 12 J: drr’?q(r)

XH N (kr)(p,(kP) — 3, (7)) (4.7)

and we denote the three terms on the rhs by B,, B,, and B,,
respectively. Here

a =im2~ ' +3))! (4.8)

and H{") ,,, (kr) is the leading term of H {) , , (kr) as r—0,
ie.,

H® ,,(kr) =B, (kr)~1-12,
where

4.9)
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B, =1/ + 1)a,. (4.10)
Then
IH;I-')-l/z (kr) —FII(I-;)-l/z (k’)|

<c(kr) 1321 + kr)' -2 (4.11)

We consider B, first. Upon inserting (4.11) and (2.16) into
B, we see that

|B,|<Ck* f dr _____r3|q(r) I
0

(1 +kr)?

< kr)*-°
Ck”’f drrlg(r| S
< o rrlan| (14 kr)?

—_ O(k o+ l).
To analyze B,, we expand H {*) |, one term further:

H;l_}), 2 (kr) =Bl(kr) —1-172
+ 7, (kr) ="+ 4 R, (kr),

(4.12)

(4.13)
where

Y1 =8,/2Q21—1). (4.14)
Now, R, (k,r) obeys the following estimates. For / = 1,

|R, (kyr) | <CChr)> (1 + kr) ™! (4.15)
and, for [>2,
|R; (k,r)|<C(kr)">~1(1 + kr)' =4, (4.16)

By using (2.10) it is easy to see that the contribution from
R, (k,r) to B, is O(k?3) if | = 1 and O(k*) if I>2, provided
only o = 1. Splitting off the leading term, we obtain
o(k?),
O(k*),

1=1,
152
(4.17)
It remains for us to consider B;. We make use of another
representation for y, (k,r), which we obtain by applying the
variation of parameter formula to (2.1), namely

B, =al7’1k2fw dr?~'q(ry,(r) + {
o

k) =y, (r) + k*u, (r) + T,(k,r), (4.18)
where
u,(r)y= J- dt b, (r,t)y, (1), (4.19)
0
h(r,t) =y, (1§, (2) —7,(r)y, (1), (4.20)

and

T,(k,r) =k2f dth,(rt)(y,(kt) —py, (). (4.21)
0

Here y, is the solution discussed in Sec. II, (2.17)-(2.20).
From the properties of y; and y, we infer that

|h(r)|<CF 1t = 1<r, (4.22)
w(r)~ —A WP+ r-w, (4.23)
u,(r)~const # *3, r-0. (4.24)

Moreover, by (4.22) and (2.16) we obtain the bound
| T, (k,r)|<CK 4 2. (4.25)
Now we put R = 1/k and write
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B,=qa;k T+ 1/2f dr rl/ZQ(r)fII +172 (kr)
R

R
X (kr) =y, (D)) + k' VZI dr rllzq(r)
o

XH, 1 kO) (3 (k) =y () =d 4+ T,.  (4.26)
The term J, is estimated by means of (2.16) and (4.9):

|J,|<Ck? f drrig(r)|
R

<Ck'+"JW dr|g(r)| =o(k°*1). (4.27)
Now we write J, [:sing (4.9)] as
L =ap,k? fR drq(r)r~'u,(r)
OR
+alBIJ; drq(r)r='T,(k,r). (4.28)

We split the second integral in Eq. (4.28) into two, with one
going from O to R '/2 and the other from R /2 to R and esti-
mate them by using (4.25):

R
f drq(r)r='T,(k,r)
0

R
<Ck (5+0)/2 f drlq(r)l’p
(*]

R
+Ck"+'f drlg(r)|¥ =o(k°*1). (4.29)
53
We write the first term on the rhs of (4.28) as
a,B,sz drq(r)r~'u,(r)
0
'—alﬁlsz drq(rr='u(r) (4.30)
R

and observe that here the second term is bounded by [use
(4.23)]

Ck""‘f°° drlg(n)|r =o(k°*1). (4.31)
R
Thus

B3=a,B,k2Jm drq(ryr~'u;(r) +o(k°+1). (4.32)
0

Thus from (4.12), (4.17), and (4.32) we obtain (4.2) with

< =al?’1f drP~'q(r)y,(r)
o

+a,B,f drr='qg(ryu,(r). (4.33)
0

We must still transform ¢, into (4.3). To this end, we
observe that

—ul +qu, + 11U + 1)/Plu; =y, (4.34)
Upon multiplying Eq. (4.34) by r~' and integrating by
parts twice, we obtain the relation
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f drr=1y,(r) = 2 + DA,
0

+ Jw drq(r)r~'u,(r). (4.35)
0

The first term on the rhs comes from r = o because of
(4.23) and (2.8). In a similar manner we deduce from Eq.
(2.1) with k = 0 that

2(1=2n Jw dry,(nr-'= on drq(riy,(r)rr .
° ° (4.36)
By using (4.36), (4.35), (4.8), (4.10), (4.14), and (2.18)
we obtain
o= —A|wl*= — 7@ + 14, (4.37)

which is the first relation in (4.3). To establish the second
relation in (4.3) we proceed as follows. Let G; denote the
integral operator having kernel g, (0,r,7'). Then (2.3) for
k = 0 becomes

n=r+'—Ggy. (4.38)
Since F; (0) =0, i.e., D, = 0, we also have
y=A;r'— G, (4.39)

where G ¥ is the adjoint of G,. Now we introduce a coupling
constant A [i.e., we replace g by Ag in (2.1)] and denote the
corresponding zero-energy solution and Jost function by
yi(rrA) and F,(kA), respectively. We have that
yi(r;1) =y, (r) and F, (k;1) = F,(k), F;(0;1) = 0. Wealso
put

a
V() = hedd (r2) s (4.40)
c?z z=A
dF,
Fy (k) = — (k) (4.41)
aZ z=2A

Then by (2.6) and (2.12),

1 f‘” _
F,,(0) = d ry,(r)
71 (0) A +1k rr='q(r)y(
1 « _
+ 5 +1f0 drr='q(r)y, ()
1 ® _

= —1+ mJ; drr=lqg(r)y, (r), (4.42)

yu = —Gaqy —Gaqy,. (4.43)

From Eq. (4.43) y,; can be obtained by iteration. To sim-
plify the notation in the following calculations, we freely use
the notation (f,g) evenif fandgarenotinL %, butfgisin L .
Then, by (4.38), (4.39), (4.43), and (2.9),

A (gr~'y) = (@1 + GEQyip)
=((1+¢GMgy1yi1)
= (g (1+G,q)y)
= — (g,G,9y1)
= (gyp1) — (g, *1)

= (guy)) + (21 + 14, (4.44)
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Thus

F,1 (0) = (gn)) /(21 + 1)4, (4.45)
or

o= —Fy 0|y 1>/ (gyy), (4.46)

which is the desired second form for ¢,. The proof of
Theorem (4.1) is complete.

Relation (4.45) also holds when / = O [recall that y, is
bounded so that (gy,, y,) exists].

The proof of part (i) given here is a simpler version of a
proof that appears in Ref. 15.

A. Levinson’s theorem

Since if F; (0) = 0, then k ~'Fy(k) or k —2F, (k) (I>1)
tends to a finite limit as k10 and F,( — k) = F,(k); the
same limits are approached as k 10. Moreover, F, (k) is ana-
lytic for Im k>0 and continuous for Im k>0. Then by a
Phragmen-Lindel6f theorem'® (the required exponential
bound is established easily) these same limits are ap-
proached as k—0 from the upper half-plane. Hence by the
usual contour argument, the contribution from the point
k=0leadstoa=1(/=0) ora=2(l>1) in (1.4) [when
F,(0) = 0] and the ordinary Levinson theorem holds.

B. Threshold behavior

Suppose that geL | and F,(0;1) = 0. Upon expanding
F,(k;A) near k = 0and A = 1 (F, isanalyticinA) and using
(4.1), (4.2), and (4.46) we conclude that there is a function
k(A) obeying

Fi(k(A)A) =0 (447)
and
k(A) = —id 53 groyo) (A —1) +0(A—1), =0,
(4.48)
k(A) =i[|(gry) [/l ] (A — 1)12
+o((A =13, I>1. (4.49)

Since (gy;.y;) <0 (4.47) means that k%(1) is a negative
eigenvalue of Eq. (2.1), converging to 0 as AL 1. The manner
in which it does so is, for /> 1, in agreement with a general
theorem found by Simon'? and, for / = 0, consistent with
related results'’ but at least o = 2 was required in Ref. 11.
Note added in proof: We were unaware of the book by V.
V. Babikov [ The Variable Phase Method in Quantum Me-
chanics (Nauka, Moscow, 1968) (in Russian) ]. It contains
some results about the low-energy behavior of the phase shift
for inverse power-law potentials (p. 121). We wish to thank
D. Bollé and F. Gesztesy for pointing this reference out to us.
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APPENDIX: PROOF OF LEMMA (2.1)

(i) Clearly, it suffices to prove (2.14) and (2.15) when
6 = 2. Since a proof of (2.14) is given in Ref. 1 we omit it
here. Thus we turn to the case F,(0) = 0. Here we use the
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decomposition (3.11) along with (2.12) and (2.13) (i.e.,
D, = 0) and rewrite the term 4, (k,r) as

—l)f dtg()ye(t). (Al)

in k
A(kr) = —r(su;c r

r

Thus
|[4,(k,r)|<C [kr/(1 + kr) ]2 (A2)

Similarly, we easily see by means of elementary estimates
such as [sin z — z|<cz’/ (1 + z)? and by using the monotoni-
city of z/1 + z that

|4; (k,r) |<C Lhr/(1 + kr) 1%, j=234. (A3)
Also,
|[As(k,r)|< cr fdth(t)l o(k.t) — yo(2)]. (A4)
14+ krJo

Thus, letting u(k,r) = yo(k,r) — yo(¢), we have

kr )2 r J"
k, dt |g(t k).
ly( ’)'<"(1+kr tesT | dtlaol lutk]

(A5)

By applying Gronwall’s lemma, we obtain

lu(k,r)|<C [kr/(1 + kr) 1%,
whence (2.15).

(ii) The proof is similar in spirit to case (i). By using
D, =0, we may write

nwkr) =y, (r)=I+ - +1
where

Ii= =270 + 1/2)k =" V2P 2T, o (ki)

(A6)

(A7)

— T 112 k) f’ drt ~'q()y, (1), (A8)
L=— % J; dt(r)V2, Ly (kY 1) (kD)

— ¥, 1n (kD)3 (D), (A9)
L= —g—J:dt(rt)”z(Y, 12 (kP

= Y12 (kD)) 12 (KDG(D)y, (1), (A10)
I= lzr—fo dt(r)'2F, k)W, 4 12 (D)

—Ji 12 (kD) (D), (A1)
Ii= — ertg,(k,r,t)q(t)(y,(k,t) —y(®),  (Al2)

and where J, 123 Y, +1,2 denote the leading parts of
i+ 125 Y1412 as r—0, respectively. Explicitly,
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Ji 1 kry = (DU + D) (kr/2)' + 12, (A13)
?1+1/2 (kr) = =21+ V21D + 1/2) (kr) ~1- 12,

(A14)
We note the estimates
I 12 @|KCE 21 +2) "1, 250, (A15)
Vi 4122 _71 +12@DKCE (1 +2) 77, (A16)
Y4122 = ¥ 1 DGz ¥2(1 +2)'7%, (A1)
|g; Ckort) | <Ck ~kr/(1 + kr)]' +!
Xkt/(A+ k)1~ t<r. (A18)

By using these estimates and (2.10) we can check that
|L|I<Ck2[(r/(1 + &)V +Y, i=1,..,4. (A19)
Using (A18) to estimate I, and letting u,(k,r)
=y, (k,t) —y, (¢) we obtain
I +1 kr I +1
u, (k,r) | <Ck? (—’—) +Ck —l(—)
[ | 1+ kr 1+ kr

" kt
X f dt|q(t (

5 lg(2)| T+
Hence by Gronwall’s lemma,

[, (k,r) | <CE2[r/(1 + kr)]' +1
This proves Lemma (2.1).

)
) |u; Ck,t)|. (A20)

(A21)
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An algebraic formulation of the problem of three particles in one dimension is given, where the
particles interact with delta function potentials of arbitrary strength and have almost arbitrary
mass. An algebraic formulation is taken to mean that the steps implied from formulation to
solution involve finite algebra. The canonical example is equal mass particles interacting with
equal strength delta function potentials, where the Bethe ansatz holds and the solution involves
only sums of products of matrices with elements that are rational functions of a complex
variable. When the Bethe ansatz fails the Sommerfeld diffraction ansatz is satisfied if a
condition of internal consistency is met. This condition of internal consistency requires the
solution to a Riemann-Hilbert functional equation with an algebraic coefficient. The solution
to this functional equation is an analytic, but not generally a meromorphic function. It is
demonstrated that an asymptotic solution may be constructed within the domain of algebraic

functions.

I. INTRODUCTION

We shall consider here the quantum system of three par-
ticles of arbitrary mass in one dimension interacting with
delta function potentials of arbitrary strength. Our goal is to
show that these problems are exactly solvable. We shall take
“exactly solvable” to mean that all of the algebra implied
between formulation and solution is finite and therefore
may, in principle, be evaluated. We take “exactly solved” to
mean that this evaluation has been carried out. We shall
leave the exact solution of various cases to subsequent work.

If the masses of the particles are equal and the delta
function strengths are equal the problem is solvable.! The
algebra of the problem is factorized by the Bethe ansatz.
Gaudin? has extensively studied the problems solved by the
Bethe ansatz technique. These problems are essentially all of
the exactly solvable models of particle mechanics and statis-
tical mechanics.

The Bethe ansatz technique is so pervasive in the exactly
solvable models of mathematical physics that the algebraic
consistency condition of the ansatz has been referred to as a
condition of solvability, or a condition of complete integra-
bility. The implication is that should the condition fail to be
met, the problem is unsolvable. We shall demonstrate that
for the class of problems under study here, this implication is
incorrect.

Examination of the details of the factorization of the
equal mass equal strength delta function problem helps to
illuminate the true algebraic meaning of the Bethe ansatz
consistency condition. Gaudin® provides a careful study of
this point, which we briefly summarize here.

The Bethe ansatz of the equal mass, equal strength delta
function problem assumes that the state function of the par-
ticles is given by a set of occupation numbers of plane wave
states, and that these occupation numbers change according
to two-particle amplitudes only when the coordinate separa-
tions of the pairs of particles reverse.
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Consistency of this assumption is established by show-
ing that the values of the occupation numbers for any permu-
tation of the particles in state 4 (some permutation of the
order of the particles along the line) conditioned upon given
occupation numbers in state B is independent of the path
taken from A to B. This consistency condition is often called
a “star—triangle relation.”

If a star-triangle relation is satisfied the problem is ex-
actly solvable because the algebra required is finite. When
the Bethe ansatz is satisfied the computation of the occupa-
tion numbers involves only a finite number of multiplica-
tions and additions of functions of parameters and dynami-
cal variables. These algebraic operations, often called
“transfer matrix methods,” may, in principle, be carried out
completely. Baxter® offers examples of problems solved by
this technique.

In the case of three particles interacting with delta func-
tion potentials this consistency condition is satisfied only if
the masses of the particles and the strengths of the delta
function potentials are all equal. There are two results in the
literature where the problems are exactly solved and the
Bethe ansatz fails. The authors* analyzed an impenetrable
case, where the three interacting particles were of arbitrary
mass, but constrained to be in a fixed order along the one
dimension. Gaudin and Derrida® analyzed a case where all
masses are equal, two delta function strengths are equal, and
one delta function is of zero strength.

In general outline this formulation will follow that of
Ref. 4. In Sec. III we make an ansatz, the Sommerfeld® dif-
fraction ansatz. It is an assumption of this ansatz that the
analog of the occupation numbers are members of a certain
class of analytic functions of the independent variables.

In Sec. IV we find that these occupation numbers satisfy
a set of matrix difference equations. As in transfer matrix
methods, a finite number of algebraic steps is required from
the formulation to the solution of these difference equations.
These algebraic steps are indicated in Sec. V. Many of the
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algebraic steps indicated cannot be done with pencil and pa-
per by a human being. Computer assistance is required.

Generally, we will only indicate what algebra is to be
done. Much of the mathematical justification for the indicat-
ed computations is left to later publication.

The Sommerfeld ansatz also requires that a condition of
internal consistency be satisfied. This consistency condition
requires that the analytic functions involved satisfy a Rie-
mann-Hilbert functional equation. Functional equations of
this type appear in Refs. 4 and 5, but the methods used in
their solution are inadequate to deal with the algebraic struc-
ture of the general problem.

The methods developed in Sec. V are applicable to a
class of problems where the problems of Refs. 4 and 5 appear
as special cases. The sense in which these cases are special is
algebraic. They are separated from the general case by being
cases where the coefficient of the Riemann-Hilbert func-
tional equation is an algebraic function whose Riemann sur-
face is topologically genus zero or one. The genus of the
algebraic coefficient of the general case can be any integer,
and the whole character of the solution changes abruptly.

The solution to the matrix difference equations is most
easily achieved in a particular basis. This basis is not the
most convenient for the usual boundary conditions for parti-
cle scattering. Section VI deals with the form of integrals of
the Sommerfeld ansatz that transform the solutions of the
matrix difference equations into the amplitudes for physical
processes. Section VII shows how to explicitly calculate
those amplitudes for asymptotic boundary conditions.

1l. FORMULATION OF THE PROBLEM

The Hamiltonian for three particles of masses m,, m,,

m,, interacting with delta function potentials of strength g,
82 83 18

H= p’ + p.’ + 12

2m; 2m, 2m,

+8:16(x; — x2) + 8,6(x; — X3) + 836(x; — Xx3).

Several papers'” give the details of a transformation to the
center of mass that reduces the problem to one with two
independent variables. We will not repeat the transforma-
tion or its attendant algebra here, but will just remind the

reader of the result.
The stationary state problem to be solved is

(V2 + k¥ =0,

except upon lines in the two-dimensional state space where
the delta function potentials act. These lines are shown in
Fig. 1. The important features are as follows.

(1) Each wedge corresponds to an ordering of the three
particles along a line. The angle of opening of the wedge de-
pends upon this ordering and upon the masses of the three
particles.

If m;, m_., m, correspond, respectively, to the three
masses in order left, center, right, the angle of opening of the
corresponding wedge is

a=tan"'[(m, +m, + m,)m,/mm, ">

(2) Delta function boundaries lie along radial lines
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FIG. 1. The two-dimensional state space in the three-particle center of
mass.

where the wave function is nonanalytic.

By integrating the differential equation along a line per-
pendicular to the boundary it is found that on this boundary
the wave function satisfies a two-sided boundary condition.
There is a discontinuity in the normal derivative that is equal
to the value of the wave function times the strength of the
delta function on the boundary, i.e.,

v ¥
anl, on

where g, is the strength of the delta function along the & th
boundary.

=g, V(0),

IIl. THE SOMMERFELD ANSATZ
A. The state function

We now make the Sommerfeld diffraction ansatz.® We
assert that in each wedge between the delta function poten-
tials the solution may be written as a path integral of the
form

V(rb,) = f F, (w,0,)e* =" dw,
C

where F(w,8, ) is an analytic function of the two variables
w,0,. The contour integral is computed over a path in the
complex w plane which must be chosen to justify the follow-
ing manipulations.

(1) We wish to replace differentiation with respect to »
with differentiation with respect to w under the integral sign,
and integrate by parts.

To justify this operation we require that the contour
pass to infinity in two different places in the complex w plane
and that the integral along this contour does not diverge.
Under this restriction the partial differential equation in 7,
0, is satisfied if

9F _9F _
aw? 362
which implies that

F=Gk(w+0k) +Hk(w—‘9k),
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|

FIG. 2. The basic contour.

where G, (x), H, (x) are analytic functions of the single
variable x. Here G, and H, are different functions in each
region of the two-dimensional state space.

Under the same conditions it is possible to move the
operation of differentiation with respect to the normal to a
radial line to an operation under the integral. By the same
sequence of operations (i.e., differentiate under the integral
sign and integrate by parts) it may be shown that

u_ o
dn  rdo,

=ikf sinw[G(w + 6;) — H(w — 6,) ] ™ =¥ dw.
c

(2) We wish to be able to perform the integrals over G
and H independently in either the calculation of ¥ or its
normal derivative.

This requires that as 6, varies through real values, no
pole or branch of either G or H is crossed by the contour. We
anticipate that all of the singularities of these functions will
be at some finite distance from the real axis (i.e., none will be
at infinity), and therefore we choose the contour so that it
bypasses all of the singularities by always being greater than
this distance from the real axis.

Figure 2 shows a contour in the complex w plane that
satisfies both of these constraints. There are infinitely many
other such-contours, where w—w + 2n7 in the upper half-
plane, and w—2/7 — w in the lower half-plane.

B. Probability flux conservation

The Sommerfeld ansatz assumes that we may write an
integral representation of a solution

Y(r,0) = JG(w)e”‘"m (w=9) dw + fH(w)efk’m(w+9> dw,
c c

where ¥, G, and H are all column vectors each of whose
elements are associated with one of the regions of state space.
The probability flux through a circle whose center lies at
the center of mass in state space is proportional to the flux
matrix
— rx(22) - (Z)xwe]
® l[wx( ar ) (6r)xw ’
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where the X indicates the outer or tensor product of the
column vectors.

The integral representation of this flux matrix contains
several terms, each of which has a 9-dependent scalar kernel.
A typical form for this kernel is

K(0) = {cos(w — 8) + cos(w’ — 8)}

ik -8 — ' — )}
Xe r{cos(w — 8) — cos(w' )’

which may be rewritten as
K(0) =2 coslfi(w + w') — )

Xe~ 2ikr sin(1/2(w — w))sin(1/2(w + w') — 8)

Thus, for all cases, the probability flux matrix contains a
scalar term of the form

K@) = L/ e
deo
where fis either sin @ or cos 6. It is therefore true that
21
j K(8)de =0,
0

which provides a flux conservation theorem.

If a Sommerfeld integral representation exists, the flux
into a full circle centered at the center of mass is zero. The
probability to be within that circle is constant.

IV. FORMULATION OF THE DIFFERENCE EQUATIONS
A. The first difference equations

In order to present a single consistent formulation that
is suitable for almost any masses of the particles and any
strength of the delta function potentials, we shall study a
generalization of the problem as presented.

Instead of the wedge structure of Fig. 1 with six wedges
of varying angles, we consider a structure in which the circle
is tesselated into NV regions where the angle of opening is the
same in each wedge, namely 27/N. We further assume that
Nisaneveninteger N = 2m, and therefore the angle of open-
ing of is each wedge is 7/m. Each pair of regions is separated
by a delta function barrier, where the two-sided boundary
condition must be satisfied. Each delta function boundary
has associated with it a strength g, , where 0<k<N — 1.

It is assumed that this tesselation represents no restric-
tion, since any masses and strengths will fall arbitrarily close
to this arrangement, provided that we make N sufficiently
large and choose the appropriate delta function strengths to
be zero.

The column vector ¥, is to be represented as

¥, (r8,) = f [Gw + 6,) + H(w — 6,) ] e* ¥ dw,

¢ (4.1)
where each value of k is identified with one of the regions of
the state space. The normal derivative is given by
¥ _ av

dn rdo,

=ikfsin W[G(w+0k) _H(w_ 0k)]eikrooswdw.
C
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FIG. 3. Coordinate choices for two consecutive regions.

We will also choose the direction of increasing 8, to
alternate from wedge to wedge, as indicated in Fig. 3. This
introduces an artificial but convenient distinction between
even boundaries and odd boundaries. (See Fig. 3.)

The delta function boundary condition is applied suc-
cessively at each boundary. The function and normal deriva-
tive integral representation of the Sommerfeld ansatz pro-
duce a set of equations that must be satisfied by the analytic
functions G, and H,. We write a typical pair of equations
assuming that boundary & separates region k fromk — 1and
that k is even.

(1) For continuity of the wave function,

G, (w) + H (w) =G, _,(w) + H,_, (w).
(2) For discontinuity of the normal derivative,
2ik sin w{G, (w) — H, (w) — G, _, (w) + H,_, (w)}
=2,{G, () + H, (W) + Gy, (w) + H,_, (w)}.
We put these equations in the form
H,_,(w) =R, (w)G,_, (W) + T, ()G, (w),
H, (w) =T, (w)G,_, (w) + R, (w)G, (w),
together with a corresponding set for the odd boundaries
G.(w+a)=R, . ,(WH, (w—a)

(4.2)

+ T, (WH, | (w—a),
G (w—a)=T,,,(wWH, (w—a)

+ R (wWH, (W —a).

The T, and R, are, respectively, the delta function
transmission and reflection coefficients,

T, =2k sinw/(2ik sinw + g, ),

R, = —g./(Riksinw + g, ).

Thus the G’s and H'’s that satisfy the delta function
boundary conditions are constrained to satisfy a set of first-
order matrix difference equations. The G,(w) and
H, (w — a) each form the elements of a column vector of N

entries. From this point forward the index k£ on G and H will
be understood.

(4.3)

(44)
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Here G and H are to be interpreted as column vectors
with as many entries as there are regions in the state space.
All of the equations (4.2) and (4.3) may be written

Gw+a)=M,Hw-a), Hw)=M,Gw), 4.5)

where the M, and M, are N X N matrices (o for odd boun-
daries, e for even boundaries). The M, is made up of m 22
matrices spanning the diagonal with the upper left-hand cor-
ner of each 2 X 2 in the odd locations (1,1), (3,3), (5,5),...,
etc. Here M, consists of m 2 X 2 matrices spanning the diag-
onal in the even locations, upper left corner in (2,2), (4,4),
etc.

Equations (4.5) represent coupled matrix first differ-
ence equations: coupled, because G depends on H and vice
versa; first difference equations, because G and H are each
shifted by one unit of & from the right-hand to the left-hand
side of the equations; matrix difference equations, because
M, and M, are matrices of rank N.

Because of the unitarity of the transmission and reflec-
tion coefficients the matrices M, and M, are unitary.

This algebraic structure is not dependent upon the delta
function potentials. Any unitary functional form for the re-
flection and transmission coefficients could be substituted,
and the corresponding solution to the difference equations
could be interpreted as a particle problem. It will be shown in
subsequent work that this matrix of transmission and reflec-
tion coefficients, which appears here as the coefficient ma-
trix in a difference equation, is the “transfer matrix” of a
lattice problem. In this way correspondences between parti-
cle problems and lattice problems may be identified.

B. Symmetries of the difference equations

We seek a solution to the matrix difference equations
(4.5). By analogy with differential equations we shall ex-
ploit the symmetries of the matrix coefficients of these differ-
ence equations to reduce the algebra required for their solu-
tion.

1. Periodicity

The matricies M, and M, of (4.5) are unitary N XN
matrices whose elements are rational functions of ¢®, and
hence they are periodic with period 27 in w.

2. Unitarity

Unitarity has a special meaning in this context. The ele-
ments of these matrices are analytic functions. Unitary ma-
trices are inverted by conjugate transposition, and ordinarily
the complex conjugate of an analytic function is not an ana-
lytic function. If unitarity is to have an algebraic meaning,
conjugation must transform analytic functions into analytic
functions; that is, conjugation must be a conformal transfor-
mation. Inspection of the matrix elements (4.4) shows that
either of the transformations

iw 1

L zoz7 i(w+1r)’

eiw_)e- eiw_,e

Z—» —2Z,

carry analytic functions into analytic functions, and invert
the symmetric matrices M, and M,. We may choose either
of these transformations to represent conjugation. The ele-
ments of the matrices, the elements of their inverses, and the
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elements of their complex conjugates will then be analytic
functions of z = ™.

There are an infinity of meanings that can be given to
complex conjucation in the w plane, due to the multiplicity
of values z—¢%""z, or the periodicity in w. We may choose
any of these meanings at our conveneicne.

3. Time reversal

From the form of the matrix elements given in (4.2)-
(4.4), the matrices M, and M, may be seen to have the
properties
M(—w)=M,(w+m)=M, (w) =M,*(w),
M(—w)=M,(w+7)=M, "(w) =M*w).

(4.6)

Again, these properties appear to be a consequence of
delta function transmission and reflection coefficients. In
fact they are properties of two-particle one-dimensional
transmission and reflection coefficients. They arise from
time reversal symmetry and certain constraints on the two-
particle interaction; these constraints are satisfied for a wide
range of interactions.

C. Symmetries of the solutions to the difference
equations

Symmetries of the difference equations allow us to gen-
erate solutions by applying the transformations associated
with those symmetries. Since the equations are difference
equations the associated transformations are discrete.

1. The translations

Given any solution to the equations (4.5) an infinite
class of further solutions may be generated by repeated
translation by 27 in w. We suppose G and H to be solutions of
(4.5), and n an integer, then G, and H, are also solutions,
where

G,=G2nr+w), H,=H(Q2nm+w),

because the matrices M, and M, are period 27 in w.

(4.7)

2. The involutions

The combination of unitarity and time reversal that
gives the identities (4.6) leads to a class of involutions or
reflexive transformations that transform solutions into solu-
tions. Suppose G and H to be solutions of (4.5). Let

G',(w)=HQ2nm—w), H', (w)=G2nr—w),

(4.8)
where n is any integer. This transformation is an involution;
if repeated the original G and H are recovered.

The functions G’ and H ' satisfy

H'Q2nr—w—a)=M,G'2nr—w+ a),

G'(2nm —w) =M _H'(2nmr — w).

We substitute w— 2n7 — w and use the properties (4.6) to
obtain

Gw+a)=MH'(w—a), H(w)=M,G'(w),
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which are Egs. (4.5). Thus any particular solution to (4.5)
leads to an infinite class of solutions generated by these in-
volutions.

3. The general solution

The general solution is an arbitrary linear combination
of all possible translations and involutions. The general G
and H may therefore be written

G(w) = zanGn + zblGlh
(49)
H(w) = Sa,H, + $hH",

where — 0 <N <, — 0 <l< w0, and the a,, b, are con-
stants independent of w.

These symmetry properties are sufficient to assure that
an algebraic solution to the finite difference equations exists.
Further symmetries that come about due to pairwise interac-
tions and the functional form of the transmission and reflec-
tion coefficients will be discussed in subsequent work.

4. The difference equations

The symmetries of periodicity, unitarity, and time re-
versibility make it possible to represent the general solution
as a linear combination of all translations and involutions of
a particular solution. We therefore seek a particular solution
to the matrix difference equations (4.5),

Gw+a)=M,Hw—a), Hw)=MGw).

The matrices M, and M, are unitary matrices. Their ele-
ments are rational functions of z = ¢™. Some economy of
presentation is effected if we write the difference equation as
a function of z. Recall that & = 27/N = 7r/m, and let

a)N — w21r/a —_ 1.
The difference equations then become
G(wz) =M,(z2)H(w™"2), H(z) =M,(z)G(2).

These two forms of the difference equations are equivalent,
but in context one is often preferred over the other. In what
follows we shift freely from one representation to the other.

V. THE ALGEBRAIC SOLUTION OF MATRIX
DIFFERENCE EQUATIONS

A. The matrix Riemann-Hilbert functional equation

We iterate Eqgs. (4.5) to produce a matrix Riemann-
Hilbert functional equation

G(w + 27)
=M,(w+2(N—-1DaM,(w+ (N — 1)a)
X XM, (w)G(w) =N, (w)g(w),
Hw+2r~a)
=M, (w+2(N—1Da)M,(w+ (N - 1)a)
XXM, (wWYH(w—a)=N,(w—a)H(w—a).

(5.1)

With the change of variable z = ¢ these equations read
G(w"z) = N,G(2),
Hw" 'z) =N, (w '2)H(w '2),
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where " = 1, and
N, =M, (0" '2)M, (" ~%2) "M, (2),
N, =M, (o"2)M, (o™~ 'z) "M, (wz).

Equations (5.1) are matrix Riemann-Hilbert func-
tional equations. They differ from the functional equations
of Refs. 4 and 5 by having matrix rather than scalar differ-
ence coefficients. Every solution of (4.5) satisfies (5.1).
Thus every solution to the difference equations satisfies a
matrix Riemann—Hilbert functional equation.

We shall relate particular solutions of matrix difference
equations of this type to the eigenvectors of the coefficient
matrices. The eigenvectors of these matrices have compo-
nents that are analytic functions of z = ¢"*. We shall under-
take in a separate work a justification and discussion of some
of the analytic properties of the eigenvalues and eigenvectors
of matrices, particularly as they may be deduced by comput-
er assisted algebraic computation. In the interest of contin-
uity, readability, and brevity, we will proceed here by stating
the results.

(5.2)

B. The algebraic properties of the matrices N, and N,
1. Elgenvalues

The matrices N,,, where 1 is a collective index for either
o0 or ¢, are matrices whose elements are rational functions of
z = ™. They are therefore period 27 in w. They have further
properties that arise from the unitarity and time reversibility
of the matrices M, .

Note, from (5.2), the identities

N,(wz) =M,N,(0™'2)M [,
N,(z)=M,N,(z)M 7.

From the second of these identities we see that NV, and N, are
similar, and thus have the same characteristic equation and
the same eigenvalues.

(1) The characteristic equation of N, is

P(A,z) = Det(N, —AI) =0.

It is usual to regard this equation as defining 4 as a
function of z on a Riemann surface of NV sheets (N =2m is
the rank of &V, ). In this multiple value view we parametrize
A as an N-valued function of z.

The algebraic relation between A and z is independent of
parametrization. It is equally valid to parametrize A and z
with a single parameter w = — i In z. In this view both A and
z are many valued functions of w. By virtue of the algebraic
relation between A and z both are simple automorphic’ func-
tions of w, and invariant with respect to the same group of
fractional linear transformations.

(2) From the first identity of (5.3),

P(Alwz) =Pl '2) =0, Awz)=A(o '2),

and the coefficients of the characteristic equation of N, are
functions only of 2, or, what is the same thing, the eigenval-
ues of N, are periodic with period 2a in w.

From the time reversal-unitarity properties (4.5), cou-
pled with the definition (5.2) we have another identity

Ng'z™") =N,(2), (5.4)

(5.3)
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which implies the following.
(3) The eigenvalues of N, are unimodular,

P(A_IJ_1)=P(/1)Z)9 A(Z)=/1_l(z_l)) /ll*=1)
(5.5)

if we interpret conjugation as per Sec. IV B 2.

The characteristic equation of N, P(1,z) =0, gener-
ates a field of algebraic functions of z. This field of algebraic
functions contains all functions that may be written in the
form

N—1
02)= Y Q,(2)A"
n=0

Functions Q(z) in this field satisfy an algebraic equation
with coefficients that are rational functions of z. The degree
of this equation is <.

2. Elgenvectors

The identities (5.3) are basis independent and apply to
the matrices N, in diagonal form. Consider the algebraically
defined matrix

-1 dP\~!
A, (A2) = — (N, —ADT'P(A2)|——] -
ar

= matrix of cofactors of (¥, — A1)

9 Det(N, —in|

X {—= Det — )

{8/1 etV )]
where the complex variables A and z are related so that

Det(N, — AI) = P(A,z) =0.

Here A, has the following properties:
(1) A, is a commutative eigenvector matrix of N,

N,A, =A,N, =AA,. (5.6)
(2) The eigenvectors in A, are normalized
Tr A, =1.
(3) The relations (5.3) imply
A (wz) =M A, (0™ '2)M; !,
° (5.7

A, (2) =M.A, (M.

(4) Unitarity and time reversibility (4.5) imply, from
(5.4),

A, =A,(2), A, (—w)=A,(w). (5.8)

(4) These eigenvector matricies are orthonormal pro-
jection matrices:

ifA=8 A,(42)A,(Bz2)=0;
ifA=8 AL(4z)=A,12).

(5) The elements of A, are algebraic functions of z.
These elements therefore take on all values if they are not
constant. Of particular interest in what follows will be the
places in the complex z plane where they are infinite and
where they are zero.

(a) Some, but not all, of the elements of A, must have

zeros at the zeros of det N, and det N, .
(b) Infinities of the elements of A, may only occur at

the zeros of the algebraic function
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_ap
=
These infinities occur at the simultaneous zeros of P(4,z)
and JP /3A. They are therefore branch points and not
poles.
The matrix A, is the algebraically determined analog of
a normalized eigenvector. The properties stated here are the
algebraic analog of the familiar properties of the eigenvec-
tors and eigenvalues of a unitary matrix.

(6) Here A, is a matrix that is the outer (or tensor)
product of a normalized eigenvector with its adjoint (conju-
gate transpose). This representation of A, is a convenient
and economical way to account for the properties A,,.

Let v be an m-component column vector and satisfy

Ny, =Av,, vi'N, =Aut7,

vy, =1, A, =v, X"
These properties of v, may be seen to account for all of the
properties of A,,.

The elements of A, are said to be in the field of algebraic
functions generated by P(A4,z) = 0. One consequence of this
property is that we may write an algebraic equation satisfied
by each of these functions with z as the independent variable.
When it is possible to write such an algebraic equation for a
function of z, we say that the function is algebraically deter-

mined.
The individual components of the normalized eigenvec-

tors are not algebraically determined. Any set of compo-
nents may be multiplied by an arbitrary function of z such
that

p(2)p*(2) =p(2)p( —2) =p(2)p(z™ ") =1,
which may be seen to leave all of the elements of A unaffect-
ed. This independence of eigenvectors on eigenvector phase
is a symmetry, often called gauge symmetry.

(7) The relations (5.7)-(5.9) imply

Pole(@2) =M, v, (0™ '2), p.v,(2) =M,uv,(2),

(5.9

(5.10)

where p, (2)p, (z™") = py(2)po(z~") = 1. In addition there
is an identity that is required by (5.6),

m—1

m—1
A= ,.l;Io p. (@0*"z) nl;Io P, (0¥ +1z2). (5.11)

C. Eigenvector solutions to the matrix difference
equations

The functions p, are not generally algebraic functions.
They need not be in any algebraic function field. The arbi-
trary nature of p,, arises from the symmetry of independence
of eigenvector phase, which is from gauge symmetry. It is
always possible to choose a basis eigenvector phase, or
gauge, such that p’, is in the field of algebraic functions gen-
erated by the characteristic equation of N,. The details of
how to do this will be presented elsewhere. We shall proceed
here by assuming that this has been done. When this has been
done we shall say that the eigenvectors are in standard form.

Let G=s,v,, H=s,v,, and Egs. (5.10) become

{p,5. (025, (07 '2)}G(w2) = M,H(0 ™ '2),
{p.s; " (2)s.(2)}H(z) = M,G(2).
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The matrix difference equations are solved if we find
analytic functions s, and s, such that

s, (wz) =p,s, (0" '2), s,(2) =p.s.(2). (5.12)

The matrix difference equations are solved provided
that a proper solution to these difference equations exists. A
proper solution is a solution consistent with the analyticity
constraints of the Sommerfeld ansatz. Every solution to ei-
ther of Egs. (5.12) satisfies a scalar Riemann—Hilbert func-
tional equation of the form

s(w + 27) =A(w)s(w), (5.13)

where A (w) is an algebraic function of z = ¢™. An alterna-
tive form of the equation is

s(o™z) = A(z)s(2). (5.13")

It is possible to show that if we are given a particular
solution to the Riemann-Hilbert functional equation, we
can construct a solution to (5.12). We find it convenient to
defer this argument to Sec. V E.

D. The solution of scalar Riemann-Hilbert functional
difference equations

The difference coefficient in the scalar Riemann-Hil-
bert functional equation A (w) is an algebraic function of
z=¢"; A and z are related by the characteristic equation of
N,,, a rational function of the form

det(N, —AD =Y T 4,42 =0,

where 4; are constants.

The degree of A is 2m, the rank of N,,. The degree of z
depends upon the specific form of the transmission and re-
flection coefficients for the two-body problem. From the pe-
riodicity of the characteristic equation z appears only as 2™

Functional equations of this type have been solved by
exploiting some special form of the characteristic equation.
In the most frequently occurring case the Bethe ansatz is
satisfied, z does not appear, and all the roots are A = 1. The
impenetrable case of Ref. 4 is a special degenerate case where
N, is of rank 1, and 4 is a rational function of z. The case
analyzed by Gaudin and Derrida® will be shown in a later
work to correspond to a case where m = 3, the characteristic
equation is reducible to a quadratic in A, and in this quadrat-
ic z appears only to powers 12, 6, and 0.

The function A (w) is an automorphic function, invar-
iant with respect to a group of fractional linear transforma-
tions 7. Let Q be a subgroup of those transformations such
that Q(w) = w + 27. We phrase the Riemann-Hilbert
functional equation as

s(Q(w)) = A(w)s(w).

SinceA is automorphic with respect to 7, A (T(w)) = A (w) is
true for arbitrary w. It is true then, that

s(QT) = As(T).
Suppose that s(7(w)) is a solution to (5.13). Then
s(TQ) = As(T).

By functionally inverting the analytic function s we see that
QT =TQ=s""(4s),

(5.14)
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and therefore Q and 7 commute. It is not difficult to show
that the only transformation that commutes with a transla-
tion is another translation. If there are more than two linear-
ly independent translations the group is continuous, and not
allowed. Thus if solutions transform into solutions under all
of the transformations of the group of automorphisms of A4,
the group is singly or doubly periodic.

There is no reason to assume that the characteristic
equation of N,, will be such that all of the automorphisms of
A are periods. We shall show in a later work that the cases
previously cited are the only cases where this will be true.

It is well known that any singly or doubly periodic func-
tion may always be represented as a ratio of theta functions,
or as an elliptic function.>*” An important consequence of
this restricted functional form is that the solution to the Rie-
mann-Hilbert functional equation may be written as a ratio
of infinite products of linear factors; through the theta func-
tion representation in the doubly periodic case®; through a
polynomial representation in the singly periodic case.*

The solutions generated in either the singly or doubly
periodic case are in the field of functions generated by the
characteristic equation of N,. They possess all of the auto-
morphism of this field, and no others. In the general case this
will not be true. The general restriction on the solution of the
Riemann-Hilbert functional equation is that it be analytic,
to satisfy the constraints of the Sommerfeld ansatz. It need
not belong to any particular function field or be automorphic
with respect to any particular function group.

Particular analytic solutions to (5.13) are not difficult
to construct. Again, make an ansatz and look for a solution
of the form

s=A"
This is a solution if v satisfies the difference equation
viw+27) —vw) =1,

(5.15)

which has the particular solution
v =w/2m.

The general solution is obtained by adding a solution to the
homogeneous equation

v =w/2m+ é(w),

where ¢ (w + 27) = ¢(w).

At each pole or zero of A in the w plane a new branch of s
is encountered. If A is not singly or doubly periodic these
branches cannot be removed and the solution exists on a
Riemann surface of infinite genus, which means that the so-
lution is restricted to a particular sheet of the function A.

This solution is analytic and may be expanded in a pow-
er series with a finite radius of convergence at any ordinary
point of the surface of A (w). Almost every point is an ordi-
nary point; i.e., the poles, zeros, and branch points of 4 and s
are isolated.

The functional equation for s leads to poles and zeros of
increasing multiplicity the greater the range of re(w), as
may be seen from the w dependence of v. This is characteris-
tic of the solution of Riemann-Hilbert functional equa-
tions.*?

The solution to the difference equation therefore re-
quires that we pick a particular sheet of the algebraic func-
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tions A and remain on that sheet for all path integrations.
This restriction is to be maintained in all that follows.

E. Unimodular solutions to the scalar Riemann-Hilbert
functional equation

In Sec. IV we found the operation of complex conjuga-
tion was identified with either of a pair of fractional linear
transformations z—z~! or z— — z. Unimodular functions
are functions (like 4 and p, ) whose reciprocal is their conju-
gate.

Since complex conjugation is an operation that carries
analytic functions into analytic functions, it preserves func-
tional relations and we may write from (5.12)

s, *(wz) =p,*s,* (@07 '2), s5,*(z) =p,*s,*(z). (5.16)

Multiply the left- and right-hand sides by the left- and
right-hand sides of (5.12), respectively, and note that
pup.* = 1. Thus

5. *¥(wz)s, (wz) =5,* (07 '2)s, (0™ '2),

s,*(2)s,(z) =s.*%(2)s,(2).

This shows that functions, (z)s, *(z) is a function only of z™
and is therefore periodic with period 2a in w.
Since every solution is only determined up to a multiple

period 2« in w, we may, without loss of generality, choose
the functions s,, to be unimodular, that is

5,8, *=s5,5*=1

We replace z by z~ ' in (5.16) and rearrange to obtain

s.¥wz7h) =p, X, * (07 '271), 5.*(z) =p,*s,*(2).
(5.17)

Again, respectively, multiplying left- and right-hand sides
by left- and right-hand sides of (5.12),
s, (wz)s,*(wz™") =5, (0 '2)s,* (0™ 27 "),
5,(2)s5,*(z) =5,(2)s5,*(2). (5.18)
The Theorem of Unimodularity: If 5, is unimodular and
F=35,(z)5,*(z" "), (5.19)
the difference equations imply that
FF*=1 and F(o%)=F(z).
The function F is unimodular, a function only of z™ and
period 2« in w.

In the w plane with the particular choice of involution
such that z—z~! implies w— 27 — w, implies

F=s5,(w)s,*2m — w),

which we shall use in satisfying a class of asymptotic bound-
ary conditions.

F. An explicit connection to the Riemann-Hilbert
functional equation

To provide an explicit solution to Egs. (5.12) it is con-
venient to separate them by the substitution

5,(z) = B(z2)A(wz), s,(z) = B(0’2)A(0z),

which, upon substitution in (5.12), yields the second differ-
ence equations
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B(w%z) =p,B(z), A(w*z) =p,A(2).

In these second difference equations only the second dif-
ference appears, so that we may solve them by the first differ-
ence techniques. Let us seek a particular solution that is uni-
modular.

We let

B(z) =B,(2)A"*", A(z) =A,(z)A "7,
and
B, (w’2) =p.Ae~ "B, (2),
A, (0°2) =p,A,~V™4,(2),
where

m—1

m—1
A= ,.I;[o p.(0*"2), A, = nl;Io P (0*"2).

The expressions

m 1/m
Be — [ H pen(wl(n—-l)z)] ,

n=1

m 1/m
4,= { Hpo"(w“"-“z)] :

n=1
are unimodular solutions to (5.12). The ambiguity that
arises in the taking of the mth root is equivalent to multipli-
cation by a unimodular function period 2a, the function F of
the previous section. This ambiguity is to be resolved with
the application of boundary conditions.

G. Summary of the solution to the matrix difference
equations

A particular solution to the coupled first difference
equations (4.4) is

G(w) =s, (W, (w), Hw) =s,(w)y,(w),

where v, (w) and v, (w) are standard form normalized ei-
genvectors of N, (w) and N, (w), respectively, and s, is a
particular solution to

Se(wz) =PoSo (a)_lz)! So(x) =pese(z)'

where p? (w) and p? (w) are algebraic functions in the field of
functions generated by the characteristic equation of .

A unimodular solution s, (w) is constructed from p,,
P, and s(w), a particular solution to a Riemann-Hilbert
functional equation

s(w 4 2m) = A(w)s(w),

where A is a root of the characteristic equation of N,,.

In order to answer specific questions about the quantum
system under investigation, we require that we be able to
choose s(w) such that linear combinations of translations of
involutions give rise to state functions that satisfy boundary
conditions specific to some physical situation.

These boundary conditions are conditions on the state
function on some boundary of the state space. In order to
satisfy conditions of this type we need to be able to see the
behavior of the integrals of the Sommerfeld ansatz in the
vicinity of the boundary.

VI. THE INTEGRALS OF THE SOMMERFELD ANSATZ

We have seen how to determine a class of particular
solutions to the difference equations generated by the Som-
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merfeld ansatz. The complete determination of the solution
to the partial differential equation requires that a particular
solution be modified to satisfy boundary conditions on the
state function. We now represent the integrals of the Som-
merfeld ansatz for the special case of a unimodular eigenvec-
tor solution to the difference equations. We wish to see how
these integrals reveal the behavior of the state functions they
generate.

A. Involution and translation reduction of the integrals
of the Sommerfeld ansatz

In Sec. IV we found that the complete solution to the
coupled first difference equations is given by finding a partic-
ular solution of the coupled matrix first difference equations
for G and H; the remaining linearly independent solutions
are generated by repeated application of involution and
translation transformations. The general solution is to be
written as a sum over translations and involutions of a par-
ticular solution, as in (4.7)—(4.9). These forms are then sub-
stituted into the basic integral representation of the Sommer-
feld ansatz (4.1). All of the integrals are to be computed on
the basic contour of Fig. 2.

The complete state function is

o0

>

n= —

oV, + 3 b,

I= —

where
v, =f[G(w+9+2n1r) +HQnr+w—0]
c

ikrcoswd \
Xe w (6.1)

v, =J[G( —w+60+2r) +HQ2lm —w—0)]
C
Xeikrcoswdw.

We substitute the unimodular eigenvector solutions of
Sec. V for G and H, making repeated use of the fact that the
s,, satisfy the Riemann-Hilbert functional equation (5.13).
The integral ¥, is evaluated on the basic contour of Fig. 2,

v, = f [A"(w+ 0)s, (w+ O, (w+6)
C

+AMw—0)s, (w— v, (w— ]

X e*r e dy. 6.2)

and ¥ is evaluated on the lower half-plane image of the basic
contour; C'(w) = C( — w),

¥i= [ [+ 05,0+ 00,0+ 6)
3

+ A (w—6)S,(w— 8w, (w— 0]

Xeikr cos w dw

Every choice of g, and b, leads to a linearly independent
solution. Each of the integrals is a linearly independent solu-
tion. These two linearly independent solutions for the same
n, ¥,, ¥,, have the same integrand, but differ in the place-
ment of the contour in the complex w plane.
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FIG. 4. The basic contour and its deformation.

B. Deformation of the basic contour

We now deform the basic contour as shown in Fig. 4.
Only two types of paths remain: open contours that begin
and end at infinity and pass through a single stationary phase
or steepest descent point; closed contours that enclose singu-
larities, either poles or branch lines. Each of these types of
path give a characteristic contribution to the state function.
The lower half-plane image of the basic contour is deformed
in the same way.

1. Contribution from an open contour passing through
the steepest descent point at w=0

At every point on the path the integrand is of the form
e'*resw where cos w has a positive real part and therefore the
phase is increasing in the direction of positive r as time in-
creases. All contributions on this path are waves diverging
from the center of mass of the three-particle system. Thus
any contour that passes through the steepest descent point at
any even multiple of 7 contributes a state function made up
of only outgoing waves.

2. Contribution from an open contour passing through
the steepest descent point at w=m

At every point along the path the contribution is of the
form e ¥, where cos w has a negative real part and there-
fore the phase is increasing in the direction of negative r as
time increases. All contributions on this path are waves con-
verging upon the center of mass of the three-particle system.
Thus any contour that passes through the steepest descent
point at any odd multiple of 7 contributes a state function
made up of only incoming waves.

3. Contribution from a closed contour

The closed path surrounds an area of the complex w
plane, exclusive of the steepest descent points at w =20,
w = 7. Inside this contour there are, in general, both poles
and branch points connected by branch lines that cannot be
crossed by the contour.

Poles of s, within a closed contour will contribute plane
waves. Plane waves are eigenstates of a two-body system.
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Their presence is signaled by a pole of det NV,.

Infinities of the components of eigenvectors appear at
the branch line paths within the closed portions of Cand C’
the line path integral is of the form

b
f F(w)eikrcos (w—8) dw,
a

where a and b are branch points. The state function that
arises from a line path integral is not interpretable as either
of the above types of state function. The paths connecting the
branch points are not allowed to approach the steepest des-
cent point, so that the integrand is typically rapidly oscillat-
ing. An exception to this typical behavior occurs when & 2<0
and the branch points are real.

C. Interference of ¥, and ¥/,

We wish to emphasize that although these path integrals
generate a complete set of linearly independent state func-
tions, the state functions are not orthogonal. The probabili-
ties generated from the absolute squares of these state func-
tions will not be probabilities of independent events.

The bewildering array of linearly independent solutions
arises from the fact that a bewildering array of possible phys-
ical situations are consistent with this formulation. The
Sommerfeld ansatz has provided an algebraic solution to any
three-particle problem where the particles interact locally
(i.e., when their coordinates are identical ) within a bounded
region of state space that includes the center of mass. This
bounded region can be finite, as in periodic boundary condi-
tions. The outside of this bounded region is not a part of the
state space of the Sommerfeld ansatz, and the freedom to
accommodate any sort of interaction outside that region ac-
counts for the wide range of possible solutions.

Vil. THE ASYMPTOTIC SOLUTION
A. Asymptotic boundary conditions

The problem of fixing G and H for arbitrary boundary
conditions is formidable. We concentrate our efforts here
upon finding an asymptotic solution. This asymptotic solu-
tion is to exist in the wedge shaped region bounded by the
limit - o0, and the two lines § = 0 and 8 = « in each region
of the state space.

A simplification of an asymptotic solution is that the
spectrum is known. The only amplitudes which survive as
r— oo correspond to energies that belong to a continuum
beginning at the binding energy of the lowest two-particle
bound state. We will assume that in at least one channel the
interaction is attractive and a two-particle bound state exists.
This assumption is not required to satisfy any algebraic con-
straint. It is adopted so that some normalizable state may be
analytically continued from k2> 0to k2 <O0.

These scattering, or zero density, boundary conditions
are not all-inclusive. The asymptotic result may always be
recovered from a wave packet argument as the zero density
limit of any finite density solution, but it is not clear what
features of a finite density solution may be derived from the
asymptotic limit.

We have seen that all solutions may be derived from
linear combinations of translations and involutions of any
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particular solution to the difference equations. It will be con-
venient to base our discussion upon the eigenvector particu-
lar solutions of Sec. V.

In order that a proper normalizable solution exist within
an infinite wedge the wave function must satisfy certain con-
ditions.

(1) The wave function must be regular at » = 0, which,
for eigenvector solutions, requires that s, (w) be bounded as
W—lcw.

(2) The wave function must not increase exponentially
in any direction within the wedge.

(3) We shall make it a condition of our asymptotic solu-
tion that only two-particle bound pair plane wave states exist
in the asymptotic limit.

In the asymptotic limit open contours contribute only at
the steepest descent point, and give rise to what we shall call
“free waves.” These free waves are either incoming which
converge upon, or outgoing which diverge from the center of
mass of the three-particle system. Condition (3) does not
allow contributions from the branch line paths to arise
asymptotically. In our analysis this condition is met by open
contours blocking the branch line paths from the steepest
descent point. Only open paths are allowed to pass through
these points.

Condition (3) forbids a plane wave asymptotic solution
unless the plane wave is associated with a two-particle bound
pair. These bound pair plane waves come from poles within
the closed contours.

B. The unimoduiar eigenvector particular solutions

The unimodular eigenvector particular solutions auto-
matically satisfy condition (1). We rewrite the integral rep-
resentations for these solutions as

¥, =T60)+I3(6), ¥,=I7"(6)+T8),

where

(7.1)

re9) = J- A™(w)s, (w)v, (w)e =@ =9 gy,
c

rz(6)= J- ,{n(w)so(w)vo(w)eikrcos(w+0) dw,
C

I'" is the lower half-plane image path integral, i.e, - T" if
C-C'.

The unimodularity theorem (5.17)—(5.19) the proper-
ty (5.8) that v, (0) =v,( — @), and the aymptotic bound-
ary conditions allow us to represent ', and I', in a single
integral representation.

We choose the functions s, to be unimodular, so that

5,5, * =5,5,*= 1.
and

F=s,(w)s,*(2r — w).

The difference equations imply that

FF*=1 and F(w+ 2a)=F(w),

the function F is unimodular and of period 2a. Conditions
(2) and (3) imply that F has poles only where A or 4 ~1is
inifinite. These conditions limit F to the form
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F=¢"18,
where 6 and ¢ are real parameters. These parameters define
a particular solution of the difference equations such that
5, (w) = €A%, (27 — w). (7.2)
By using the properties of the function A, and the fact
that s, satisfies the Riemann-Hilbert functional equation
this relation yields the following useful relations:
s,( —w)=e" "4 ~°*'s (w),
s,(m—w) =e Y%, (1 +w),
which, together with the properties above, may be substitut-
ed into the integrals (7.1) to obtain a relation among the I"’s:
[7(0) = — eV "2+,
This leads to a representation of the state function
¥V, =T"0) —e ¥I'""~°+1(0),
¥, =T"(0) —e "I ~"~%+1(9),
where

"= f A" (w)s, (w)v, (w)e™ ===~ dy,
c

I' is the corresponding lower half-plane integral.

We shall now demonstrate that probability fluxes de-
pend upon s,,5,, *, which is constant, and upon the real pa-
rameters ¥ and 6. Thus, through the choice of unimodular
eigenvector particular solution to the difference equations,
we avoid the full complexities of the solution to a Riemann-
Hilbert functional equation.

C. Asymptotic unimodular eigenvector solutions
1. Amplitudes of free waves

We deform the basic contour for the integrals I as dis-
cussed in Sec. VI, and as shown in Fig. 4. The integrals I", I’
are evaluated asymptotically. The open paths contribute
only at the steepest descent points, w = 0 and w = = for the
contour C, w =0 and w = — 7 for the contour C'. The in-
coming and outgoing asymptotic column vectors are

W, ou = 2u/kr) 2™ 4e*r{qn —g— g —n—0+1}

Xs,(0)v,(0),
V, i = 2u/kr)!2e™ e = kr{j —n _ g~ Wjn+8}
Xs,(m+ O, (7 + 6),
V) o = (2u/kr) 24" {f 1 =4 —1-2+1}
Xs, (), (6),
W, = (2/kr) V2= ki) — 141 _g—igji+5-1}
Xs (7 + O)v, (7 + 0),

where ¥, =¥, .. for all choices of ¥ and 8. Here
¥, ., 1 =¥, for all choices of ¢ and &.

2. Fluxes of free waves

The incoming and outgoing probability fluxes are
formed in accordance with Sec. III B. The outward prob-
ability flux normal to a circle of radius 7 is given by
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ar
Here P(0) is a probability flux matrix, and is independent of
r. For example,

_ P(O)n,

r

(7.3)

=i

n,out n,out *7T
X \Iln.out .

or ar

v, . T v
Pn,out (e) = i'(‘lln,out X - )

We substitute the above expressions for the ¥, and obtain
the probability flux matrices,

Py on =47{2 —e WA ~SF1 _ Y15 1}A,(6),

Py, =4m{2 —e¥A% — %A “IA, (m + 6),

Py =4m{2 —e W T8 _ i1l (),
P, =4m{2 — YA "8 _ AT YA (7 + q),

P =P, urPriim =P, forall choices of ¢ and &.

The P(8) are matrices whose elements are analytic
functions of 6. The Riemann-Hilbert functional equation
enters only through s, s, *, which is constant. In the physical
region of 8, where 0 < 0 < a, the diagonal elements of this
matrix give probability flux at each value of  in the region.
The off-diagonal elements give the relative phase between
the probability fluxes in the various regions.

We have separated the matrices P, because they have a
special meaning. The number # is like an eigenvalue of angu-
lar momentum, and is associated with rotation in the state
space of the three-particle system. It corresponds to the min-
imum length occupied by the three particles in the course of
their scattering multiplied by the momentum of the system
in the center of mass. The particular case n = 0 means that
the particles are correlated such that all of the incident flux,
either bound or free, is timed so that all of the particles arrive
at the center of mass as nearly as possible to the same time.
They cannot all arrive at exactly the same time because of the
uncertainty principle. The maximum three-particle scatter-
ing corresponds to n = 0.

A convenient choice of § is § = 4, which makes

Poout P* i = 4m{2 —e YA 2 — ¥4 2}, (6).

With this choice of § the conservation of free flux is manifest
for all values of . Not only are the total fluxes equal, the flux
in and out at each value of @ are equal. The total flux out in
the physical region is given by summing over all regions and
integrating over physical 8. The sum over all regionsistr A,
and tr A, = 1 for all . Thus

¢t)\.lt (k2) = 44Tfa (2 —_ e_"ﬁl 172 —_— e"/’}' — 1/2)d0.
0

This is an integral of the algebraic function A */?, and is
irreducible. It is one of the natural functions of this system,
and must be evaluated independently.

This choice of 8§ is convenient for other values of n as
well, but the flux conservation is not manifest. There are as
many flux conservation integrals as there are independent
integrals of the algebraic functions A !/2. This number is

166 J. Math. Phys., Vol. 29, No. 1, January 1988

3p — 3, where p is the genus of the Riemann surface on
which A '/? is uniform.?

3. Bound pairs for n=0

The bound pair amplitudes arise only from the presence
of poles in s, (w), because the components of the eigenvec-
tors cannot have poles at the two-particle bound states.
From the explicit form of the solution to the functional equa-
tion (5.20) we deduce that poles of s, are colocated in the w
plane witha poleof A or A ~'.Since A4 ~! = 1. The zeros of A
are the poles of A ! and vice versa. The poles of 1 and 4 ~!
are the poles of det &V, which are the poles of two-particle
reflection and transmission coefficients. Thus the colocation
of poles and zeros of s, with poles of A or A ~! is consistent
with conditions (2) and (3).

We concentrate on the case n = 0, where the two inte-
grals to be evaluated are

re =J s, (W), (w)e*r o= gy,
c

r’= f 5. (W)v, (w)e*r st =9 gy
c

Consider the asymptotic bound wave arising as the re-
sult of the residue of a simple pole at w,,

% = 27ie™ e =9 lim (w — wy)s, (w)v, (w)

w—w,

= 2arie™*r < =g (wo)v, (Wy),

where

S (W) = lim (w — wy)s, (w).

the residue of s, at w,,.

This simple pole must be colocated with a pole of either
A or A ~!. We assume it to be located with a pole of A, and
factor out A using the difference equation

S, (W) = lim (w — wy)A(w)s, (w — 27),

A has a simple pole at w,, and s, (w, — 27) is regular. The
residues of s, at simple poles are therefore directly related to
the residues of A by the relation

S, (Wo) = A, (wy)s, (wy — 27),

where
A, = lim(w — wy)A (w).
w—0

We compute the flux matrix which arises from (7.3). In
the case of the bound waves the flux arises from I'°, I"*® due
to a simple pole in s, at w and s, * at w'":

P, = 877ikr(cos(w — 8) + cos(w'* — 6))
Xeikr(cos(w— ) — cos(w'* — 8))
XS, (w)s.,* (W), (W) Xv, * (W)
= 2ikr{cos }(w — w'*)cos}(w + w'*) — 6)
e~ 2ikr(sinj(w — w'*)sin(i(w + w'*) — 6))

X (87, (w)s,, * (W' )v, (w) Xv,*(w')).
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Conditions (2) and (3) impose further restrictions
upon the location of these poles. Let w =u +ir,w' =u’
+ i, u, u',7, and 7' all real. Suppose k to be real and posi-
tive, kK 2> 0. There are the following choices for the values of
u, u', 7,7, which are consistent with conditions (2) and (3).

(1) u=u' =0, 7=7">0 contributing

— 2kr sinh 7sin 0

= 2 cosh 7 cos e
X (872krs,, (7)S., *(T)A, (1)),

a matrix that is everywhere exponentially decreasing in the
physical region, but that nevertheless carries a net flux at
8 = 0 for each value of 7. This flux is calculated by integrat-
ing0<rsinf< o

® (6 =0) = 872 coth 7s,, (i7)s,, * (i) A, (iT).
The positive sign of this flux indicates that it represents
outward probability flow. We use the above rule for the cal-

culation of the residue of s, at a simple pole, and obtain an
expression in terms of the algebraic functions A,

® (0 =0) = 877 coth 74, (iT)A,*(iT) A, (iT).

There is one such contribution for each value of 7 consis-
tent with the binding of the pair on the boundary at 8 = 0.
The matrix A, (i) will be nonzero only for the regions con-
nected at 6 = 0 and with a value of 7 specific to the strength
constant on that boundary.

The same is true for the remaining cases.

(2) u=v' =7+ a, 7=17">0, contributes incoming
fluxes at 0 = a:

D(@=a)= —8r?coth7A, ~ 4, ~1*

X(r+a+it)A, (r+a+ir).
(3) u =4’ = 7, 7 = 7' <0, contributes incoming fluxes
atf@=0:
V(@ =0)= — 87 coth7d, (7 —ir)A,*
X(mr—iT)A, (m—iT).
(4) u=u' =a, 7= 7' <0, contributes outgoing fluxes
atf=a:
®(@=a) =877 coth7d, ~Y(a —ir)d, ~'*
X(a —in)A, (a —ir).

The contributions (1) and (4) are outgoing fluxes,
whereas (2) and (3) are incoming. Contributions (1) and
(2) are in the upper half-plane, and arise from I'°, contribu-
tions (3) and (4) are in the lower half-plane and arise from
|

In these bound pairs, as in the free fluxes, the conserva-
tion of probability flux is manifest. The sum of the fluxes in
all channels is the trace A, = 1, as before. The symmetry
of A,

A*=A(r +w),
is reflected in the residues. It is therefore true that

P, (0=0)+9,,,(0=0)=0
from (1) and (3), whereas

P . (6=a)+P,,(0=a)=0
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from (2) and (4).

A similar argument can be carried out for any value of n.
We shall not reproduce it here, but will justify it in subse-
quent work when we discuss the details of special cases.

D. Conservation of probability flux for =0, 6=}

The unimodular eigenvector solutions conserve prob-
ability flux for every value of 8 in the case n = 0,5 =}. We
analyze the behavior of the flux matrix for all values of k 2, in
this case.

For k 2> 0: The outgoing and incoming total free fluxes
are, for any value of ¢,

b2 = 417'Jq (2 —e ™A V2_ ¥4 —1/2)dp.
0

This total flux is obviously conserved. From the properties of
A it is not difficult to show that ¢ is positive and real. If
¥=0,P(0) =0.

The outgoing and incoming bound pair flux matrices
are, for each value of 7 consistent with the strength constant
on the boundary: along 8 = 0,

®(0 = 0) = 872 coth 74, (ir)A,* (ir) A, (iT),
®(0=0) = — 877 coth 74, (7 — iT)A,* (7w — iT)

XA, (7 —ir);
along 6 = q,
P(@=a)= —8mcoth7d, ~'A, " "*(r + a +ir)
XA (7 +a+ir),
b(@=a)=8r"coth7Ad, ~(a —it)A, ~ "*(a — ir)
XA, (a —ir).

The fluxes balance individually because tr A=—1 and
Alw+ 7) =1 %(w).

For k%<0, the incoming free wave flux is associated
with a wave function that is exponentially increasing in the
physical region. Here ¥ must be chosen so that the total free
wave flux is zero, and is therefore determined by the tran-
scendental equation

fa(Z —e WAV Y] —12)do =0.
0

This choice does not affect the bound pair fluxes. The state
function is affected by the necessity of the inclusion of a
virtual state, neither incoming nor outgoing, which exists
only for that value of ¥ for which the above condition holds.

As k? decreases past the first bound pair threshold, the
flux of that bound pair must be included in the virtual state,
and the condition for ¢ becomes

877 cos 7A,A *(71)
+ 4ﬂJ—a(2 —e W2 _ o] —12de =0,
0

where we have chosen the first threshold to be along 8 =0
with strength constant appropriate to the value of 7, which is
now real.

Finally, when all thresholds have been passed the condi-
tion for a bound state is that all of the state function be in the
virtual state, and i must satisfy
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8172[2 cos 7;A,4,%(7;) + 3 cos 74,4, (a — 1})]

+4r| (2—e " HAV2_e¥q ~12)dg =0,

0

VIil. CONCLUSION

At this point we terminate this discussion of the asymp-
totic solution and the algebraic formulation of three particles
interacting in one dimension. Much that is said here requires
further explanation. Much that is known has not been dem-
onstrated. We have not showed, for example, how to calcu-
late scattering and rearrangement fluxes for all values of k 2.
This is a difficult calculation in general, and we have not

included it because we feel that it is easier to understand in
the context of a special case.

Special cases will be given in subsequent work. The prin-
cipal limitation on these examples is the state of the art of
algebraic computation. We hope that we have given suffi-
cient information for the reader to see what algebra must be
done.

For the asymptotic problem the fundamental algebraic
function is A4 /2 and its first integrals. These integrals are
irreducible and specific to the algebraic structure of the
problem being analyzed. One feature of this algebraic struc-
ture is the genus of the Riemann surface upon which the
algebraic function may be uniformized. If A /?isan algebraic
function that can be uniformized on a surface of genus p,
there are 3p — 3 first integrals to be computed, and these
integrals cannot be expressed in terms of other more elemen-
tary functions.

The simplest class of delta function interaction prob-
lems that give rise to algebraic functions which are not ellip-
tic functions is the case where the three masses are equal and
the three strengths of interaction are nonzero, with one
strength different from the other two. This problem may be
reduced to 3 X 3 matrices, and the characteristic equation of
N, has been worked out. It remains to calculate the appro-
priate integrals and to solve for the energy of the bound state
and provide calculations of rearrangement and breakup pro-
babilities. On this problem, at least, we can promise more in
the future.
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Another area of investigation only partially developed
here is the question of the algebraic structure of the connec-
tion to the Bethe ansatz. It turns out that the necessary and
sufficient condition for the consistency of the Bethe ansatz is
that N, = identity, so that all solutions are periodic 27 in w.
The algebraic condition that this occur is a set of relations
among matrix elements, and the equations thus generated
are called star—triangle relations. It is possible to describe
particle problems that give the same star—triangle relations
as those of conventional lattice problems, which establishes
an algebraic relation between particle and lattice problems.

At present the only way to move from a three-particle
problem to an n-particle problem is to satisfy the Bethe an-
satz. The question of a generalization of the Sommerfeld
ansatz to more than three particles is open.

It is a principal conclusion of this work that the Som-
merfeld ansatz is consistent, and the eigenvector particular
solutions exist and form a complete set for three-particle
problems where the boundary conditions are not asympto-
tic; for periodic boundary conditions, for example. The diffi-
culty is that the spectrum must be calculated. The difficulty
in finding the law that generates the spectrum is already
present in those cases where the Bethe ansatz is satisfied.
When the Bethe ansatz is satisfied few spectral laws have
been fully analyzed. No law for the generation of the spec-
trum where the Bethe ansatz fails has ever been formulated.
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A new renormalization procedure for the solutions of Einstein’s field equations in 4 dimensions
obtainable by the inverse scattering method (ISM) of Belinskii and Zakharov [Sov. Phys.
JETP 48, 985 (1978)] is presented. It allows one to obtain families of diagonal metrics which,
in addition to the solitonic parameters that characterize the ISM, depend on 2(d — 3) extra
arbitrary parameters. An example of cosmological relevance where the source is a massless
scalar field in five dimensions is presented. It represents a general family of two-parameter
four-dimensional metrics that for great times go into the perfect fluid Friedman—Robertson—

Walker regime.

I. INTRODUCTION

A fair amount of work has been devoted in the last years
to the construction and analysis of the properties of solutions
of Einstein equations with an Abelian G ; group of isome-
tries. This appears to be justified since this class contains
some of the more interesting, from a physical point of view,
of the stationary axially symmetric metrics as well as most of
the relevant cosmological solutions. As a result, a variety of
methods, such as the Bicklund transformations, Honse-
laers-Kinnersley—Xanthopoulos transformations, the Neu-
gebauer-Kramer involution, the Hauser—Ernst formulation
of the Riemann-Hilbert problem, etc. (for a review see Ref.
1), have been developed and applied to the construction of
solutions, starting from seed metrics with these symmetries.
Among these approaches, and because of its relative simpli-
city, the inverse scattering method (ISM) of Belinskii and
Zakharov? has been shown to be of great utility in the con-
struction of models of physical relevance including superpo-
sitions of N-Kerr particles,? astrophysical models represent-
ing black holes distorted by surrounding matter,* as well as
in the study of vacuum cosmological models,” where the
ISM provides a natural way of breaking in one spatial direc-
tion the Bianchi symmetries for homogeneous models.®” In-
teresting results have also been obtained by Carr and Verda-
guer® and Ibafiez and Verdaguer’ concerning the
propagation of gravitational waves on a Kasner background.
The last two authors have also studied this type of phenome-
non for a vacuum Friedmann-Robertson-Walker (FRW)
model, the Milne universe.!?

Belinskii'! extended the ISM to study cosmological
models, particularly FRW models with “stiff®” fluids (i.e., a
fluid where the energy density equals its pressure) and Kit-
chingham'? has shown that it is possible to unify the treat-
ment of all the models admitting two spacelike commuting
Killing vectors containing massless fields (or “stiff fluids”),
by casting them in the generating technique form.

A serious limitation on the class of space-times to which

“Present address: Department of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260.

® Member of Consejo Nacional de Investigacionnes Cientificas y Técnicas of
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all these methods are applicable rests, however, on the condi-
tion that the Ricci tensor must vanish on the subspace
spanned by the Killing vectors. In particular, if we assume
that the energy momentum tensor corresponds to a perfect
fluid, the above-mentioned restriction requires the equation
of state to be that of a stiff fluid.! If we look, instead, for an
energy momentum tensor representing an electromagnetic
field then this must be of null type (i.e., such that the invar-
iant F*,, F** = 0, where F*_, is the self-dual electromag-
netic field tensor!?).1*

Progress in the direction of lifting the above-mentioned
restriction started with the work of Belinskii and Ruffini’
who extended the ISM to five-dimensional vacuum station-
ary axially symmetric solutions. They pointed out that
through the Kaluza-Klein dimensional reduction proce-
dure, their results were relevant to the construction of exact
four-dimensional solutions with nonvanishing energy-mo-
mentum tensor.

Later Ibafiez and Verdaguer’® used these ideas to con-
struct (starting also with a five-dimensional vacuum seed
metric), cosmological solutions that represent solitonic per-
turbations of a FRW four-dimensional background with an
effective ultrarelativistic equation of state for the matter con-
tent.

Motivated by the five-dimensional representation of the
Brans-Dicke-Jordan theory of gravitation, Bruckman'’ ex-
tended the ISM to d-dimensional stationary axially symmet-
ric space-times. He also studied families of five-dimensional
solutions that reduce in the absence of rotation to the Weyl—
Levi-Civita axially symmetric static vacuum metric, show-
ing that, in certain cases, these are equivalent to the spheri-
cally symmetric solutions of the Brans—Dicke theory.

Recently,'® we showed that, by considering five-dimen-
sional space-times with a massless scalar field as a source, it
is possible to extend the ISM to a class of perfect fluid cosmo-
logical solutions with certain symmetries. As an example we
obtained finite perturbations of the solitonic type for FRW
flat space-times with a perfect fluid satisfying a general
“gamma” law for the equation of state.

The purpose of this paper is twofold. First we show that
the ISM can be used to obtain a wider family of “solitonic”
solutions than what is implied in Ref. 2. This result is based
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on the fact that the method does not provide directly a solu-
tion of the gravitational equations and, in general, a “renor-
malization” of the new (two-dimensional) metric is re-
quired in order to satisfy Einstein’s equations. This problem
was solved in Ref. 2 introducing a scalar “normalization”
factor. We give here a generalization of this prescription that
makes use of a matrix normalization factor. Second, we
show that, as a result of this prescription, we obtain—when
the method is applied to d-dimensional seed metrics—fam-
ilies of solitonic solutions that depend, in general, on
2(d — 3) parameters (in addition to the parameters inher-
ent to the definition of the poles of the solitonic method).
They also have the interesting property that the solitonic
perturbation can be made arbitrarily small.

The paper is organized as follows. We start with a re-
view of the ISM adapted to d-dimensional nonstationary
metrics with a massless scalar field acting as a source. Next,
we consider the normalization problem and a possible alter-
native to the solution given in Ref. 2. Finally we present an
example of cosmological relevance where the advantages of
our entire formulation are explicitly discussed.

Il. THE ISM FOR d-DIMENSIONAL NONSTATIONARY
SPACE-TIMES WITH A MASSLESS SCALAR FIELD

Here we review briefly the ISM starting with a d-dimen-
sional metric in coordinates adapted to cosmological or
plane waves solutions. Because of the d — 2 group of symme-
tries present, this can be written in the form

ds’ = e (dr* — dt?) + G (1,r)dx*dx®,

where A,.B=1,....d — 2.

In this case, generalizing the results of Tabensky and
Taub'® and Wainwright et al.?° the Einstein equations for a
massless scalar field as source are

2.1)

Ro =XuX» Bv=1..4d (2.2)

If we choose null coordinates,

t=§—m, r=£+7, (2.3)
and write the function A in the form

A=A, +A,,

where " corresponds to a vacuum solution, we have the
following splitting of Egs. (2):

(@GG™Y), + (aG,G™") =0, (2.42)
_(na),  Tra’
ve T (na), daa ’
o = (ne),,  TrB , (2.4b)
(na), 4aa,
where a® = det G, and the matrices A and B are
A= —aG,G™', B=—aG,G™"
The hydrodynamic equation for y is
(aye), + (ax,) e =0, (2.3)
and the “matter function” A,, satisfies
Ape = (xe)/(na)s, Ay, =(y,)/(na);. (2.6)
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The Lax pair for Eq. (2.4a) is

D\¥Y=AY/(A<a), D,=BY¥/(1+a), (2.7a)
where ¥ = ¥ (£,97,4) and

D, =4, + [22,4 /(A +@)]3,.

HereVisa (d — 2) X (d — 2) matrix and A is a complex
spectral parameter. Also, W satisfies the boundary condition
Y(A=0)=G.

From the ¥, matrix associated with a given seed metric
G, one then constructs the vectors

m = (mg) . P [Wo™ " (Wi st.7) ] cas (2.8)

where (m,).® are arbitrary real or complex parameters
(k =1,...,n) and we assume we are interested in the con-
struction of n-soliton solutions.

The equations for the pole trajectories that characterize
the solitonic behavior of the metric are

Clie =20, /(X =)y Py, =204/ (@4 ),
2.9)

where k = 1,...,n and n is the number of solitons.

If one restricts to real pole trajectories, then the param-
eters also have to be real. The next step is the construction of
the n X n matrix

Li =m, 9 (Go) oy P /papsy — @, (2.10)
and its inverse D,,, such that
rkIDU =6kj' (2-11)

The equation®

G = (Gg)up — ; Dklmc(k)(GiC;mD(l)(Go)Da
Kl

(2.12)

provides then a new solution of (4a). Notice, however, that
this is not necessarily a solution of Einstein’s equations be-
cause, in general, det G¥.; = 87 is not equal to a”.

lli. THE RENORMALIZATION OF THE MATRIX GV

The problem of the normalization of G was solved in
the general case in Ref. 2 by multiplying by an appropriate
scalar factor to obtain the correct determinant for the met-
ric.

Belinskii and Zakharov observed that taking the trace of
(2.4a) it can be seen that det GV satisfies the equation

[a(IndetG") ], + [2(IndetG"), ], =0. (3.1)
Then, it is easily verified that the matrix
G = [@~2(det GY)] ~V9-DGY (3.2)

satisfies both (2.4a) and the condition det G** = a2.

The same ansatz was used by Verdaguer,’ and later by
Bruckman,'” for the d-dimensional metrics. However, in the
diagonal case, it is possible to make another choice, which
allows one to obtain a more general family of solutions. The
main idea is to multiply the matrix GY by a
(d — 2) X (d — 2) diagonal matrix N so that

h N
GABP _NACG CB

3.3)
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becomes a solution of Einstein’s
det G* = 2.

Because G” is a solution of (2.4a) we have to look for a
matrix N that satisfies

(@N N7+ (@N, N1, =0. (3.4)

The following structure for the matrix N guarantees that
this equation will be satisfied:

equations with

=aBY i=1,.,d—3,
) d—3 d—3
Ny_z2q_2=a’""B7779 P= > 2= a4
= =
Ny, =0, k#j. (3.5)

The reason is that 8 = det G" satisfies (3.1) and « is a solu-
tion of the wave equation (a4, = 0).

Notice that with the choicep, = — ¢; =2/(d — 2), we
recover the standard prescription.”!” It should also be
mentioned that although this nonuniqueness of the normali-
zation required to go from G" to G does not seem to have
been analyzed before, Letelier?! arrived at similar results
(for d = 4) by direct integration of (2.4a) in the diagonal
static case. We remark, however, that what our construction
indicates is that we should consider as solitonic a somewhat
wider range of solutions than that implied in
Ref. 2.

An interesting question is the possible generalization of
these results to nondiagonal metrics. We notice that some
restrictions must be placed on N, for otherwise the problem

J

A, s s n 7 ss.8[ & 8y [ n ZBy;
€ =C(ur)(1r) ’(H uk) (Br — i) k]'[ (ur — :u'k)] 1'[ (s — u,)] [H(,u'k
k=1 =1

H 2 :I):,-(y,?/z)[ ,UT2 ]2,.(6,?/2)[
— i’ R?—ps?

R*—

would, in a way, become trivial. In particular, we would like
to recover, in the general case, the possibility discussed be-
low of making the solitonic perturbation arbitrarily small.
This problem is currently under study.

To obtain the full solution we need now to integrate
(2.4b). It is a remarkable fact that even with the normaliza-
tion (3.5), the function exp (A, ) can be obtained directly by
quadratures from the matrix G**,,. (Some relations
between the functions u, and their derivatives that allow to
integrate the solution easily are listed in the Appendix.)

In general the n-soliton solution for matrix G will have
the form

n Yi i
G, = tml( H l‘k) ’Zﬂl(rt)zelz, i=

k=1

1,...d -2, (3.6)

where 8;, ¥;,and 3, are real exponents restricted only by the
requirements

Zai=o, ZB{':O! 271':0)

which are automatically satisfied by the procedure we ex-
plained above, and €] is the Kronecker tensor.
The relations
t2=T—(T2—R _,uT9
r2 — T+ (T2 —R 2)1/2E — U,
can be used to define new coordinates R, 7. From (2.4b),

and using the equations given in the Appendix, we have, in
these coordinates,

(3.7)

2)1/2E

(3.8)

Zy,
.uj)]

k>j

Now using (3.8) we may write the cokresponding coefficient in the 7,z coordinates. The result is

Ay L 2 n V2 n 2 28;v; n 2By;
=CtiM(rP —t )”(1'[ ﬂk) II (% + ) (F+ﬂk)]
K=1 k_l

k=1

where

L Z 6 +262, M z B +232’

i=1 i=1

d-—2
L — B>

=1-— Z (6;
i=1

The potential y remains unperturbed by the ISM.!!
Therefore we only have to multiply (3.10) by the factor
exp(A,,) determined by Eqgs. (2.6) to obtain the new func-
tion e2*7,

These solutions provide a 2(d — 3)-parameter family of
metrics of the d-dimensional Einstein—Rosen type, satisfying
the d-dimensional Einstein equations (2.2) for a massless
scalar field. In accordance with the previous discussion, the
metrics are of solitonic type. What we are interested in is,
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2 ZAB7/2)
Hr 2] , (3.9)
R
n 2 21(1’.'2/2)
Hi
I e
;;[](ﬂk luj 2"2 #
(3.10)

I

however, the construction of four-dimensional solutions of
Einstein’s equations with nonvanishing energy-momentum
tensor. In the present context this can be achieved through
the Kaluza—KIlein-Jordan procedure of reference.'® The fol-
lowing example will be useful to illustrate the solitonic char-
acter of the solutions as well as the role played by the mass-
less scalar field that appears in the d-dimensional energy
momentum tensor.

IV. FINITE SOLITONIC PERTURBATIONS OF FRW
MODELS

We take as seed metric a flat FRW space-time corre-
sponding to a perfect fluid whose equation of state obeys a
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general y law
p=(r—1Dg
ds’ =t"( —dt?>+dr* + rPdp? + dz*),
where . is a real constant, r, @, and z are cylindrical coordi-

nates, and ¢ is the conformal time. Here ¥ and . are related
by

¥=2(124+»)/(3~).

From (4.1) we obtain a related five-dimensional metric
of the form (2.1) defining G;; =¢*> and G,;, =0
(4 = 1,2). If we look for solutions of the form (2.2) for the

five-dimensional Ricci tensor we have an effective four-di-
mensional energy-momentum tensor of the form

o =97 buw + XuXow — B (X Xac)- (4.2)

It is an interesting fact'® that for the flat FRW space-
time the function ¢ can be interpreted as the potential for a
radiative fluid with an energy density defined by the equa-
tion e (4,1, + 8,,) = 3¢~ '4,,.,, where u* is the four-ve-
locity of the fluid. The function y, on the other hand, may be
thought of as the potential for an irrotational stiff fluid with
energy density £ = — iy , v 58 (Refs. 11 and 19).

Besides, as was pointed in Ref. 18, it is always possible to
make a (formal) unique decomposition of the energy-mo-
mentum tensor of any perfect fluid of the form

T, =(+p)p.pu, +p8,..

(4.1

CtrtPitapp+ @

(0,0,)"
t"+P2+42r2+P2+¢I2

G =

(0-10-2 )Q2

t 2o ppmp

— (9, + q2)
(0,07)

into a sum of (perhaps unphysical) radiative and stiff fluids.
The importance of this fact is that, when a potential ¢ for the
radiative fluid can be found, it leads to a modification of the
formalism used in Ref. 16 which makes the ISM applicable
(in the context of a five-dimensional Kaluza—Klein—Jordan
formalism) to a class of perfect fluid solutions of Einstein’s
equations. In what follows we refer the reader to Ref. 18 for
details. The relevant quantities that define the seed metric in
the present example are
¢= G331/2=t —n+l’

a2=t2r2, 2t —a—2’

£=%/z

" t2 3,.(2—r)/4
X=[%/z(2—/2)]1/21nt, eA =[r2_;7] .
(4.3)

From this metric, with the appropriate choice of the
constant vectors m,, ‘*’, we can obtain the following three-
dimensional reduced two-solution metric:

tn
G,I;IB = tr ’
AR
where the functions u, are
prt= -0 —12—r* + {(0? + P +1%)?— a**}2,
(4.5)
In this case we have B = ¢ °r"/(uu,)* and then a physical
matrix for the problem is

(4.4)

) (4.6)

wherep=p, +¢,+p, + g and o, =0; ,0, =0, withoF =ut/(2rt).

For t— o these functions have the behavior,

op = —t/r+ w2/

t—~

oF = —r/t+w,’r/t3,

t— o

Therefore, for r £¢— «, we have

0.0, =1 + (0,2 — 0,2) /12,

r€t—co

(4.7)

and in this case G goes to the background if we choose p; = ¢;. With this election of parameters we have

t*/(0,0,)"

G = t*r/(0,0,)"

) (4.8)

t -—2a+2(0.10.2)q.—+—q2

and, using (17),

oA = Ct" o, — 02)2"?_ 2o0) "= (Lt oyr) (E+ 0,7) ]2

(4.9)

Pl =0 (1 =) 21 — 0y0,)?
wherei = 1,2,3, and
61 =n/2+4q,

Bi= —vi=q,, 6:=r/24+q,—1,

3
S=—(r—1+q+@) B=—(@+@)=—7, @= z 7:(6; —B;) =
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Bo=—v2=q,
_6B3r=2) 3,34
i=1 2 2
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Itis easy to verify that for ¢, = ¢, = — § we recover the metric of Ref. 18. With the same choice of ¢, and ¢, but for . = 2
(when the background corresponds to a radiative fluid) we have metric (9) of Ref. 16. Similarly, withg, = —4and g, = we

obtain metric (10) of Ref. 16.

In general we have a two-parameter family of metrics that represent cylindrical perturbations of solitonic type on the
background of flat FRW universes. A relevant difference with respect to the cases of Ref. 16 and 18 is that now we can choose
¢, = — g, and deal with a new solution where the function ¢ remains unperturbed. In this case we can construct a one-
parameter subfamily of metrics with G,; unperturbed. These are given by

P
G (010,)?
— b
Ph t"r*(0,0,)?
t — 2242

et = Ctn—z(o'l _0'2)2(‘12_1)(0'10'2)2+q[(t+0'1")(t+0'2")] —

(4.10)

(4.11)

Pl - (1 -0 (1 - 0,0,)

The limit of this metric for g — 0 is the seed metric as can
be easily seen with the aid of Eq. (A6). Thus, since near
g = 0 the metric is a smooth function of the parameter g, we
can make the solitonic perturbation as small as we want.
Actually, this interesting feature is a consequence only of our
normalization procedure. Clearly, it may be helpful, e.g., in
the analysis of the stability of the seed metric under small
perturbations of solitonic type.

Regarding the general solution, we may point out that,
as in Ref. 18, we have the following interesting cases for the
value of .

The . = 1 case corresponds to a stiff fluid background
similar to that studied by Belinskii.!

For » =2 we deal with the radiative case studied by
Ibafiez and Verdaguer.'®

For » = — 2 we have a vacuum de Sitter background,
the behavior of which is studied in Ref. 22 for the particular
valuesofg;, ¢, = g, = — . This case is particularly interest-

ing in relation to the study of the stability of inflationary
models.

For . = 0 the background is the Minkowski space time.

For . = 4 the background is dust or pressureless perfect
fluid.

We remark that in all these cases not only is the metric
but also the matter content perturbed and, in general, we do
not have as source an energy-momentum tensor correspond-
ing to a perfect fluid. This is the case even when the potential
¢ = [G;; ]"/? remains unperturbed, because the energy mo-
mentum tensor is defined via the covariant derivatives of the
potential, which are computed with the perturbed metric.

In general, the energy-momentum tensor describes an
anisotropic fluid that can be made to satisfy the strong and
dominant energy conditions,? at least in some region of the
space-time, provided the appropriate election of the relation
between », and w, is made. Another gauge freedom, namely
the election of the constant C, can be fixed by the require-
ment of regularity of the metric on the symmetry axis."

V. CONCLUSIONS

We have shown that it is possible to generalize the renor-
malization procedure for the solutions obtainable with the
ISM. In spite of its simplicity, this generalization leads to a
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richer class of solitonic perturbations of the given seed met-
ric than the standard prescription because, for every possi-
bility of election of the constant vectors (m,)* in (2.8), we
obtain now, in general, a 2(d — 3)-parameter family of met-
rics. This feature may be helpful in the study of perturba-
tions of cosmological models. The reason is that, although
the symmetry is rather restrictive, these perturbations can be
made of arbitrary size and they are due to their construction
of nonlinear type, therefore closely resembling the processes
that may occur in nature.

Another aspect of our presentation is the use of the ISM
for the construction of d-dimensional space-times with a
massless scalar field as source for the matter content. These
have shown to be of great utility, at least in one case—the flat
FRW model— where with its aid it was possible to construct
solitonic perturbations of perfect fluid solutions in four di-
mensions. This result provides interest and justification to
the search of other fruitful ideas leading to its application to
a wider class of space-times with matter.

A more detailed analysis of the properties of the family
of metrics we presented in Sec. IV is under consideration.?*
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APPENDIX

The following relations may be useful in computing the
metric coefficients:

2 2 2
K rifkr Hi:
(2] =36 + ()]
[ "z—lui2 - 2 M K
2
/‘l’i l'l‘ir ﬂ'it
ln( )] =r——, (A2)
[ r—ulll,  mom
[In(g, —p)?], = ,-M, (A3)
Hilk;
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r /'l'i,r”j,r +.ui,t.u'j,r

[In(u, —p)?], = (A4)
Bilt;
We also have
010/ [+ o)t +or)(r+ot)(r+oyt)l =a, (AS)
(g, —0) (1 —00,)tr/0,0, = b, (A6)

where ab and o, are real constants, and
K = 0y —ti {(wk - t)z - r2}1/2.
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Within the type-D Carter metric structure with a perfect fluid source, it is established that the
Wahlquist metric and a new divergenceless solution are theonly perfect fluid solutions
satisfying positive energy and regularity conditions. The divergenceless solution, obtainable
also as a limiting transition of the Wahlquist one, is endowed with three arbitrary parameters,
and contains the Kramer fluid solution as a particular case. The fluid four-velocity of these
metrics does not lie in the two-space spanned by the double principal null directions of the

Weyl tensor.

I. INTRODUCTION

The first perfect fluid solution for a rotating fluid body
bounded by a finite surface of zero pressure has been ob-
tained by Wahlquist' in 1968. This solution is of type D with
geodesic, shear-free, twisting, and diverging principal null
directions of the Weyl conformal curvature tensor. Several
years later, in 1984, Kramer derived a type-D rotating per-
fect fluid solution with geodesic, shear-free, twisting, and
divergenceless principal null directions.? One can easily es-
tablish that both the Wahlquist and the Kramer solutions
belong to the type-D Carter metric?; see metric (1) of Ref. 3,
which we shall call Carter metric from now on. In the Wahl-
quist’s case, this fact is shown in Ref. 4. Thus it is reasonable
to expect that the Kramer solution could be derived from the
Wahlquist one by a limiting process; in fact, this happens to
be the case as we shall show in this work.

The main goal of this paper is to demonstrate that with-
in the type-D Carter metric structure there exist two physi-
cally meaningful (satisfying regularity and energy condi-
tions) branches of solutions; the Wahlquist metric and a
three-parameter divergenceless solution, which contain as a
particular case the Kramer metric.

The second purpose is to show that our new divergence-
less fluid solution can be obtained from the diverging Wahl-
quist metric by a limiting contraction process.

While this paper was being reviewed,” we learned of the
work by Kramer® on closely related subjects, namely, on the
determination of the divergenceless fluid solution and the
interpretation of the Kramer solution as a limiting case of
the Wabhlquist one.

Il. EQUATIONS FOR TYPE-D CARTER ROTATING
PERFECT FLUID SOLUTIONS

The Carter metric occupies a remarkable place in the
theory of exact solutions. It contains—modulo limiting tran-
sitions—all type-D solutions in both vacuum and electrovac
cases except for solutions endowed with the acceleration pa-
rameter. It was derived by Carter in 1968 assuming that the
space-time allows (i) a two-parameter Abelian invertible
with non-null surfaces of transitivity symmetry group (time
independence and axial symmetry), (ii) the separability of

*) This work was carried out during September 1985-June 1986 when this
author was at CINVESTAYV on sabbatical leave from the Illinois Insti-
tute of Technology, Chicago, Illinois. Present address: 1615 Cottonwood
Dr., #18, Louisville, Colorado 80027.
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the Hamilton—Jacobi equation for geodesics, and (iii) the
separability of the Schrodinger equation [when (iii) holds
(ii) does automatically].

The stationary axisymmetric Carter line element, for-
mula (1) of Ref. 3, can be given in the real chart {x*}
= {x,y,0,7} as

g= (A/P)dx* + (P/A)(dr + Ndo)?

+ (A/Q)dy* — (Q/A) (dr + M do)?,
P=P(x), Q=0), M=M(),
N=N(y), A:=M-—N,

2.1)

where o and 7 are ignorable coordinates corresponding to
the spacelike 4, and timelike 4, Killing directions. Since the
signature we use is ( + + + — ), we have to require P/
A>0and @/A>0.

Considering our chart as comoving coordinates, the
components of the fluid four-velocity vector are

ut =8 (A/(Q — P))"7,

22)
wu, = —1, (@Q—P)/A>0.
The Einstein equations
Ruv - %gva = - Tuv’ T,u,v = (€+p)u;tuv +pgyv’
€+p#0, €>0, (2.3)
for type-D solutions yield the following.
(i) The equation for M(x) and N(y),
d,(M,/A) —3,(N,/A) =0
-M,, —N, —A7'[(M,)*+ (N,)*] =0.
24)

(ii) The equation for the structural functions P(x) and

0,

—2M,P, +2M,,P—2N,Q, + 2N, Q0=0. (2.5)
(iii) The equation defining the pressure p,
P=3(P,+Q,)A"". (2.6)
(iv) The equation for the energy density ¢,
€+p=4(M, +N,,)(Q—P)A25£0. 2.7)

The double principal null directions of the conformal
tensor for the studied metric (2.1) are geodesic, shear-free,
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and in general possess complex expansion Z,
Z=0+ip= —(1/20)(Q/240)'?[N, +iM,], (2.8)

where O and p denote the divergence and the twist, respec-
tively.

This geometric characteristic Z allows us to classify the
viable solutions according to the following schema:

(i) twisting (M, #0) and diverging (N, #0) solutions,

(ii) twisting (M, #0) and divergenceless (N, = 0)
solutions,

(iii) twist-free (M, =0) and diverging (N, #0)
solutions.

Sections III-V deal with the integration of the field
equations (2.4) and (2.5), for each branch of the schema
above, requiring additionally that the obtained solutions
have to be such that the energy density should be positive,
and on the limit at the rotation axis they do satisfy the regu-
larity condition

ELEr/46-1, E=CKE,, Ch=6. (2.10)

For the sake of completeness, the expressions for the
tetrad complex curvature coefficients C (“, a = 1,...,5, of the

conformal Weyl tensor are given. With respect to the null
tetrad

eI] 1 [(A)l/l _(P>1/2 ]
= —{{=]) dx +il—) (dr+Ndo)},
2
l 2 \P A .11)

3 /2 1/2
64} = L{(—A—) dy + (g) (dr + Mda)},
e N/ AN A

the only nonvanishing C > component is C ®,
6 Ac(3)

_p _3Mep _op|Mx 2(M")2+(N’)2]
I N A A A

2.9)

N,
+ny+3_A!_Qy

ol )4

+%[(AQY +20N,)M, + (AP, — 2PM, )N, ],
(2.12)

therefore, the studied metric is of type D.

lll. TWISTING AND DIVERGING SOLUTIONS; THE
WAHLQUIST METRIC

In case (i) of (2.9) two different sets of real structural
functions {M, N, P, Q} satisfy the field equations (2.4) and
(2.5). Nevertheless, only the set of structural functions cor-
responding to the Wahlquist metric gives rise to a positive
energy density, while the second possibility possesses a nega-
tive energy density.

Equation (2.4), differentiated with respect to x and y,
yields

M. . /M,= —a= —N,

»y (3.1)

If & is equal to zero, without loss of generality, the gen-
eral solution of (3.1), fulfilling also (2.4), can be given as
M =ax?+ b,and N= — ay® + b, where a and b are arbi-

trary constants. These structural functions imply, according

/N,, a=const.
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with (2.7), that p 4+ € = 0, and therefore they give rise to
solutions outside the class we are interested in.

For a different from zero, one can distinguish two
branches of solutions,

(a) a= —4v’, M =xcosh2vx +pu,
N=«kcos2vy+u,

(b) a=4% M=«cos2vx +pu,
N =« cosh2vy + u,

(3.2)

(3.3)
where u, v, and « are constants.
For @ = — 4V, the Wahlquist case, we notice that
M, +N,, =474, (34)
and hence Eq. (2.5) for P and Q becomes
A(P,, —4/*P) —2M P, +2M, P
—A(Q, +4°Q) —2N,Q, +2N,,0=0,
which differentiated with respect to x and y yields
(1/sinh 2vx)3, (Py, — 4*P)
=8Bv = (1/sin 2vy)3, (Q,, + 4°Q),

where f3 is a separation constant.
Integrating these equations, one arrives at

P, — 4*P = 4B cosh 2vx — 4av?, a = const,
Q,, +4Q= —4Bcos 2vy + 4cv’, ¢ = const.

The general solution of (3.7), fulfilling also (2.5), can
be given as

P =a + bcosh 2vx — n sinh 2vx + (Bx/v)sinh 2vx,

3.5)

(3.6)

3.7

Q =a + b cos 2vy — m sin 2vy — (By/v) sin 2vy, (3.8)

where a, b, n, and m are integration constants.
Evaluating p and € from (2.6) and (2.7) one obtains

p=— (/A (Q—P)+B/k,

€=3(v*/A)(Q—P)—B/k, €+3p=2(8/k).
(3.9)

Consequently, on the zero pressure surface (p = 0), the
value of the surface energy amount to €, = 2(8/«) > 0. If
B =0, one arrives at the Vaidya metric.” One can show, by
scaling transformations, that the obtained metric possesses
only five free parameters; for their interpretation see Ref. 1.

The “formal” solution of case (b), with negative energy
density, is obtainable from the Wahlquist metric replacing v
by iv, v—iv.

IV. TWISTING AND DIVERGENCELESS PERFECT FLUID
SOLUTION

In case (ii) of (2.9) N, = 0#M,, the general integral of
(2.4) is given by

M=k +1, N=1I v#0#x,
where «, v, and / are real constants.

Substituting M, N, and their derivatives into (2.5), one
arrives at a variable separable equation for P and Q, namely,

(4.1)
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P, — 4P +WP=4"u=0, +47°Q, u=const.
(4.2)

The general integral of (4.2) can be given as
P=p+e®(ax+b), Q=p+ycos2yy—p), (43)

where a, b, 5, and ¥ are integration constants. Without any
loss of generality one can set 8 = 0; we shall adopt this
choice of B from now on.

One easily evaluates p and €, which amount to

p= — (VV//A)(Q — P) +va/k,
€ =3(V/A)(Q—P) —va/k,

(4.4)
€+ 3p=2(va/k) .

Hence the energy on the zero pressure surface amounts to
€, =2(va/x)>0.
The evaluation of C® from (2.12) yields

C® = — (v/3A){ae*™ + 6vye*™}. (4.5)

From (4.4) and (4.5) one arrives at the conclusion that the
derived solution is equipped with three essential parameters;
v, a, and . Notice that if @ equal to zero, we have a “solu-
tion” for which € + 3p = O with positive energy density but
with negative pressure.

By linear transformations of the form

x—ax +xy, 7T-PBr+ba, y-ay+y, o-co,

(4.6)

the studied metric, assuming € + 3p5#0, can be brought to
the form

A P A Q
==dx*+—dr* + —dy* — =(dr + A do)?,
8=7 + A 0 Ay (dr
A=¢", P=u+6(x+€)e,
Q=/‘+ycosy! €0={1,0)_1}’
establishing in this manner that the studied solution is cer-
tainly endowed with three arbitrary continuous parameters.
The metric (4.7) for vanishing parameter u reduces,
modulo minor redefinitions, to the Kramer fluid solution,
see (16) in Ref. 2.
The obtained twisting and nondiverging metric can also
be written as

“4.7)

g = (e*/P)dx* + (**/Q )dy?
+ K%~ [P — Q (1 — = %)?]do?
+ e =[P — Q (1 — >~ ™)) |dr do
—e (Q — P)dr,
P=p+8(x+ €)™,
6&=110,—-1},
k6= +2[1+2v(€ey +xo)] ' exp( — vxg).

(4.8)
Q@ =p +vcos 2wy,

Thus the coordinate 7 has to be interpreted as the time
coordinate, while o is interpretable as the azimuthal coordi-
nate. The x,, value of x, which is defined as a solution of the
equation P(x,) = 0 determines the axis of symmetry and
rotation. One can easily establish that (4.8) satisfy at the
rotation axis x, the regularity condition (2.10).
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Defining the fluid one-form u = u, e, where u, = u, e}
are the tetrad components of the fluid four-velocity (2.2),
one obtains

i P )1/2 2 1 1( Q )1/2 4 3
u=—J—-—] (f—e")+——==) (¢! —¢%,
ﬁ(Q—P A2 ¢

(4.9)

therefore, the three-form

P 172
s 4=-2(___) 2 _ o'y AeP et £0.
ule’ Ae (i/\2) o—P (ef—e YNeNe*#
(4.10)

Thus u does not lie in the two-space spanned by the null
principal directions e* and e*. Consequently, the obtained
solution belongs to class II of the Wainwright classification.®

V. FORMAL TWIST-FREE AND DIVERGING SOLUTION

The third case of our schema, for which M, =0#N,
yields a three-parameter solution to the Einstein perfect fluid
equations possessing negative energy density, and therefore
of little physical interest. Nevertheless, from the complete-
ness viewpoint we consider it pertinent to present it here.
This twist-free formal solution is given by the metric (2.1)
with structural functions,

P=u+ycos2vx, Q=pu+ (ay+b)e*”,
M=I N=I—«xe*, A:=«xe*,
where u, v, ¥, &, a, b, and [ are integration constants.
The energy density and the pressure of the fluid for this
solution are given by
= —3(V¥/A)(Q—P) —va/k,
p= (V¥/A)(Q - P) +va/k,
€+ 3p=va/k.

5.1

(5.2)

Since in the zero pressure surface p = 0, the energy re-
duces to €, = va/x, which has to be positive (¢, >0), then
energy density € from (5.2) becomes a negative quantity.

VL. LIMITING CONTRACTION

In this section we shall derive twisting and divergence-

less solution as limiting contractions of the twisting and di-

verging (Wahlquist) metric. In order to accomplish the

transition, we introduce a contraction parameter € and sub-
ject the metric (2.1) to the coordinate transformations

1

x-€e x4+ (1/2v)In2e¢), y-ye~!, 1-er, o-o0,

(6.1)

accompanied by a redefinition of the parameters appearing
in the structural functions M and N from (3.2) and Pand Q@
from (3.8) according to

a—pe, 1

b-ye !,
(6.2)

K—K,

m-me?,

voey, B-va, pu—el,
noye '+ (a/2v)e 2 In 2e — be™ %

In the limit € — oo, one establishes that

lim { g,Me ™', Ne~',Pe,Qe}ws —{ 8&M,N,P,Q }ps,
(6.3)
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where the subscripts WS and BS denote Wahlquist and di-
vergenceless solutions, respectively.
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Two exact solutions of the Einstein field equations are presented, each having a Finkelstein—
Misner kink. The first of these has a perfect fluid interior and a vacuum exterior. The equation
of state is p = — p = C (where C is a constant), which is the same as that found in

inflationary models.

I. INTRODUCTION

In a previous paper’ the present authors discussed the
kink metric®

g;w = 5;41' - 2¢,u¢v

and noted the following relationship:

¢'d, =8"0.0, =8¢ = —1.
Because of the timelike behavior of ¢, it was proposed that
the ¢* be interpreted as the components of the four-velocity
of a fluid. The functions ¢, (and also the functions
¢ =g""¢, = — ¢, ) take values on a three-sphere:

2 b =2 ¥ =1

Thus at any instant of time, the {@, } represent a mapping
@:R*- 83 As |x|— 0, one obtains asymptotic flatness
(8 —=Nuy) by imposing the condition (4°¢'.¢%¢*)
—(1,0,0,0). The degree of the mapping @ then equals the
number of Finkelstein—Misner kinks® present in the metric
Buv-

* The purpose of the present paper is to seek one-kink
solutions of the Einstein equations using the above metric,
but with the {¢*} given in terms of the Skyrme hedgehog*
according to

#°=cosa, ¢'= (x/r)sina, i=123.

The angle a is a function only of 7 = (x* 4+ y* + z*)"/? and
for a one-kink metric (i.e., a degree one map onto S°) we
require* a to be continuous and to satisfy

a(0) =m a(x)=0.

Since a is known® to equal the angle of tilt of the light cone,
one can see from the form of the hedgehog that, as the cones
tip over on the way from infinity to the origin, the fluid veloc-
ity is confined to directions that lie within each of the cones,
as is required for a vector describing movement of physical
material.

The hedgehog assumption leads to the following
(spherically symmetric) form for the metric:

oo = —COs 2a, £o = — (x/r)sin2a,
8; = (x'x//r)cos 2a + 1, ,
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where 7;; is defined by
Ty =0, — xx//r

and satisfies
Tijxj = O, z Ty = 2, Z 7.ij'rjk =Tk -

Even though the metric is spherically symmetric, the time-
space term cannot be (globally) removed by a coordinate
transformation. The usual procedure® for doing this involves
defining a new time coordinate 7 =1t -+ f(r). Working in
spherical polar coordinates, the components g, transform
according to

5 d_o o df

8or = 8o 1+ &oo F = &or = o0 dr’

Hence choosing the function f so that df/dr =g, /80
should remove the time-space term (in the new coordi-
nates). However, with a kink present, such a choice of fis
not globally possible since g, will equal zero at least once
somewhere.

Such singular transformations have recently been dis-
cussed by Rosen,” who presents a number of inequivalent
spherically symmetric vacuum solutions of the Einstein
equations. Rosen’ points out that two metrics that can be
transformed into each other only by transformations that
have singularities should not be regarded as the same metric
and should not be thought of as describing the same physical
situation. Any transformation that can remove the kink
from the above metric g,, will be singular at least at one
point and will be regarded asinadmissible for the purposes of
the present paper.

Because of the nonzero g,; term, the metric g,,, is not
static. In fact, g,, is not even stationary in the sense that it
does not have a globally timelike Killing vector. The compu-
tation of the Killing vectors® yields the usual three Killing
vectors appropriate for spherical symmetry and a Killing
vector § of magnitude ( — cos 2¢r) that changes from time-
like to spacelike as a varies.

In what follows, we shall determine the unknown func-
tion a(r) so that the Einstein equations G,, = 877, are
satisfied. The { — + 4+ + ) convention of Misner, Thorne,
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and Wheeler® will be followed throughout. The symbol 8,,,,
is used to denote the components of the Kronecker delta,
whereas 77,,, denotes the components of the Minkowski met-
ric. The topology of the space-time manifold .# is assumed
to be trivial, .# = R*.

Il. CURVATURE AND KINEMATICS

The Christoffel symbols and Ricci and Einstein tensors
for the above metric are readily obtained from the formulas
given by Harriott and Williams' and are also listed in Wil-
liams and Zia® and Finkelstein and McCollum.” (For an
alternative approach related to the present work, see Clé-
ment.'®) Since detg= — 1, it follows that g** =g, and
I, =0, for all v. It is straightforward to show that

G =(—2/),(rsin’a), Gj=G{=0,
Gi=Gxx/P + (4nNd,(PG)ry,
R = (2/r*)3%(Fsin’a) .
Following Ellis,"! we note that the stress-energy tensor 7'},
can be written as
T, =pu,u’+qu" +u,q" +ph, +m,,
where g, is the energy flux (due to diffusion/heat conduc-

tion), A ;, is the projection tensor (equaltodj, + u,u”), 7, is

the anisotropic pressure (viscosity) term, and g, =

=, u, =0.Itisusual'' to assume that 7, is linearly relat-
ed to the shear tensor o, :

7, = — Ao,
where the constant A is positive and is proportional to the
coefficient of (dynamic) viscosity.

The metric, together with the above choice of fluid ve-
locity, namely, u® = cos @, ' = (x'/r)sin a, can then be
used to evaluate the various quantities occurring in the
expression for T',, . The components of the projection tensor
h;, are

hd =sin*a, hi=h%= — (x'/r)sinacosa,

hi =68 — (xx//r)sin*a.

The shear tensor is defined in terms of the covariant deriva-
tives #,,,, and the isotropic (volume) expansion §=u,:

Ou=(Uy bl +u,,hl)/2—6h,/3.

The u,,, and 6 are given by

Uy = sin 2a sina d,a,

U = — (x'/r)sin2a cos a d,a ,

uy,; = — (x’/r)cos 2asina d,a,

u,; = (x'x’/r’)cos 2a cos a 8,a + (7;/r)sina,

6=r"%3,(Psina).

The acceleration vector 4* = u, u"” is
(@%i'y = (iy,;) = (sina, — (x'/r)cos ajsina 3,a .

The shear tensor o, and the scalar shear o = (0¥ 0,,, )iz
are as follows:
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o=3"Y%3g (r'sina), 0%=03""3(1 - cos2a),

b =02= — 037 V%(x'/r)sin 2a ,

o} = a3~ (x%/P) (1 +cos 2a) — 7] .

Since the chosen metric is spherically symmetric, it is clear

that the vorticity tensor o, =k —u,h 2)/2 will be

zero everywhere. We also remark that g, #* = 0 leads to the
following relationship between the components of the heat
flux vector g,,:

g:(x'/r)sina = — g, cos a.

lll. EINSTEIN EQUATIONS

Henceforth, 7, will be equated to — Ao7,, where A is a
positive constant. Then G} = 87T} leads to

(p+p—240/3"Yugd’ + g’ + uog' = 0.

If functions f| and f, are defined by ¢, = f 1o, ¢ =11,
then the term gyu’ + u,q' can be written as (£, + f,)ugu’.
The condition ¢, #* = 0 now implies f,uu® + f,u,u' =0,
so that f,cos’a +f,sina =0. Hence f, = — fsin’a
and f, = fcos® a, where f is an as yet unspecified (and

possibly zero) function. Thus
= —fsinfacosa, ¢ = (x/r)fsinacos’a.

If any one of £ ,, f ,, or f are zero, then all three will be zero.
We now have the following relation:

p+p—240/3"+f +f,=0.
Then G’ = 87T gives
G xx//P + (1/2r)3, (PG )7y
= 8w (pu;u’ + puu’ + p8] — Ao} + qu’ + u,q’)
=8r[(p+p—200/3"> + 2f ,)u,u’
— (Aa/3""){(2x'x//P) — 1,,} + pb]] .

Comparison of the above equations suggests that we choose
[ and f, to be equal everywhere; it then follows from their
definitions that they must both equal zero. From now on, we
assume /| = f, = 0, which leads to the following equation
of state relating energy density, pressure, and shear:

p+p—240/3"=0.
Then G’ = 87T’ becomes
GIxXx//r + (1/2r)3, (PG )1,
= 87[ps] — (Aa/3"H{(2xx//P) — 7,;}]

and G = 87 T becomes G = 87 (p — 240/3"/?). (One
may check from the equation of state that 79 = — p.)

IV. PERFECT FLUID SOLUTION

For a perfect fluid, the stress-energy tensor is
T; = (p +plu,u’ + pd;,, with 7}, absent and 4 = 0. The
equation of state given previously now becomes p = — p.
The field equations of interest are

GIxxi/r + (1/2r)3,(r*G §) (6, — xx//r*) = 8mpb],
G = (—2/)3.(rsin’* @) = 8np;
the first of these can be solved by choosing G (and hence
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the pressure p) to be a constant. If the constant is assumed
nonzero, p = — C #0, the second equation leads to an inte-
rior solution

sin’a = (41/3)CP,

which requires C to be positive and hence the energy density
p = — p = C tobea positive constant. Fluids satisfying this
relation have arisen in inflationary cosmological models'?
and in certain particle models.> Alternatively, choosing
p = — p =0leads to an exterior solution

sinfa=M/r,

when M is a positive constant. For a kink to be present, these
two solutions must be joined so that a(0) =7, a(w) =0,
with sin & rising from O to 1 and failing back to 0 again as r
increases from the origin to infinity. This is achieved by the
following overall solution:

r/M, 0<r<M,
(M/r)Y2, M<Ir< o,
with M = (3/47C)"'%. The solution describes an object of
radius M surrounded by empty space. It is easy to check that
M is the total mass. The exterior solution is not Schwarzs-
child since it is not possible to transform away the g, term.
To transform the external solution into the Schwarzschild
form would require “unfastening” the solution from the
boundary at » = M. These, of course, are global comments.
The exterior solution is Jlocally transformable into the
Schwarzschild solution, in accordance with Birkhoff’s
theorem. It should be remarked that Rosen’ has given a
number of spherically symmetric exterior vacuum solutions
that are not globally transformable in the Schwarzschild so-
lution (in a nonsingular way). Unlike the solutions given in
the present paper, Rosen’s’ solutions are not kinked.

For the interior solution, the scalar curvature is
R = 327C and there is a positive expansion & = 3/M. The
scalar shear is found to be zero, o = 0, so that g,,, = O for all
.

In the exterior region, the scalar curvature is zero,
R = 0, but @ and o are found to be nonzero. (Sincep = 0, the
interpretation of nonzero 8 and ¢ is unclear, but models with
such behavior have arisen in other situations.®)

sina={

V. IMPERFECT FLUID SOLUTION

The field equations show that the only interior solution
is the previously chosen (4 = 0) perfect fluid solution. With
A >0, the field equations lead to

G — (1/2r)4,(PGY) = — 24wAa/3'?,
(1/2r)8,(PGY) = 87 (p + Ao/3'%),
GS = (—-2/7)3,(rsin’ a)
= 87(p — 240/3"%) = — 8mp.
The following may be shown to be an exterior solution:
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sina= — (A/3)r+MV2(1 +AM /2)r 2

The outer edge of this solution must be joined to the trivial
solution sin =0 to preserve the boundary condition at in-
finity. This solution will be pursued no further, except to
note that p = 24 2/3 4 4A0/3"/? is not positive everywhere.

VI. CONCLUSIONS

We have demonstrated the existence of exact solutions
for the metric g,, = §,,, — 24, 4,. The most interesting of
these was a perfect fluid solution with an exterior vacuum.
The interior was similar to an inflation metric, having con-
stant energy density p = — p. The expansion factor is expo-
nential, L «c e’/ ,sinceL /L = 0 /3 = M ~*. Starting from'*
g, = —«h (T, + Tu,) (with g, =0), it can be shown®
that the temperature falls off exponentially with increasing r.
The manifold is well-behaved everywhere,® including r = 0,
so that there are no curvature singularities.
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Using the method of null tetrad, the Kerr—-Newman metric in the background of the
Robertson—-Walker universe is derived in terms of a metric that is conformal to a generalized
Kerr-Schild metric. A new two-fluid interpretation of this metric is presented. The Kerr—
Newman metric in the background of the Einstein—de Sitter universe is discussed in detail.

L. INTRODUCTION

The problem of finding exterior gravitational fields of
black holes embedded in some world models has attracted
wide attention. Vaidya' has discussed the exterior gravita-
tional field of a Kerr? black hole embedded in the Robert-
son-Walker universe with positive curvature of the space-
like surfaces ¢ = const. The source for the above solution is
an anisotropic fluid (i.e., pressures in all three spatial direc-
tions are not equal). Taub® has shown that the source for
Vaidya’s solution can be taken as a mixture of perfect fluid
and a null fluid. Patel and Trivedi* have generalized Vai-
dya’s solution to include source-free electromagnetic fields.
Their solution describes the Kerr-Newman® metric in the
background of the closed Robertson-Walker universe. The
source of their solution is also an anisotropic fluid.

We know that the method of null tetrads is widely used
in solving the problems of relativity theory. Therefore it
would be interesting to rederive the Kerr-Newman metric in
the cosmological background by this method.

The object of the present investigation is to give this
rederivation and to give a new two-fluid interpretation of the
Kerr-Newman metric in the cosmological background of
the closed Robertson—-Walker universe. We also intend to
discuss the Kerr-Newman solution in the background of the
Einstein—de Sitter universe.

1l. THE METRIC AND THE EINSTEIN TENSOR

A space-time with metric tensor g, will be said to be a
generalized Kerr-Schild space-time ¥ when

8., =8, +2HLL, Q.1

where g, is the metric of an arbitrary space-time V, H isa
scalar field over ¥, and /, is a null, geodesic, and shear-free
vector field in V. Let us consider a space-time V'* that is
conformal to V. Taub® hp\s verified that /, remains null, geo-
desic, and shear-free in Vand V'*.

In the present paper we shall take ¥ to be the Einstein
universe. Vaidya! has shown that the metric of the Einstein
universe can be expressed in the form

ds? = —dt* +dr + (|Jp|/N1)da? + (|p)* + k*sin* a)
x sin® @ dB? — 2k sin® a df3 dr, (2.2)
where
p=(R:—k*2sin(r/R,) + ik cos a,
N2=1-(k*R1%)sin’a.
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Here R, and & are constants. Note that the cosmological
constant A is nonzero for the Einstein universe.

It may be verified that the four null vectors /,, n,, m s
and i, given by the equations

V21, = (— 1,0,k sin’ @, — 1),
V2n, = (1,0 — ksin @, — 1),

(2.3)
V2m,, = (0,0/N,ip sin a,0),
\2m, = (0,p/N, — ip sin a,0),
are such that the metric tensor of (2.2) becomes
8wy = —(n, +Ln,)+m,m, +m,m,. (2.4)

Here and in what follows an overbar indicates a complex
conjugate. Also these vectors satisfy

(2.5)

All other inner products are 0. From (2.2) and (2.3) we can
find the contravariant components of these vectors. They are
given by

ﬁlﬂ - ( - 1;030:1)9
V2nt = (1,0,0,),
V2m*
V2
If we define a vector field U, by 2 U, =1, +n, then the
following results about U,, can be easily established:
Ur =Un=—1/42 U*U,=-1U,, =0
2.7

The stroke denotes the covariant derivative with respect to
8., It is a straightforward matter to verify that

I*n, = —1, m'm, =1

(2.6)

(ip/|p|?) (k sin @, — iN,csc a,0),

— (p/|p|*) (k sin a,iN,csc ,0).

(2.8)

If @ and Q are the expansion and the rotation of the null
vector [, then Z =0 — i} =1, m* m". Using (2.3) and
(2.6) it can be seen that

g _ 2t = = —_—
A 2{ 5 sm( )cos( 0)

4]

MY —
lLy,mn" =6

— ikN cos a]. (2.9)

The Ricci tensor and the scalar curvature for the Einstein
universe are given by (see Taub®)
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R, = —(2/R2)(g,, +UU,), R= —(6/R3).
(2.10)

The following relations can be established by a straight-
forward computation:

zZ,V=—-Z,n=—(1/R3+2Z%/2),

Z,m* =0, 2.11)
_, iksinap , 2Z 1
zZ mt =—— —_Z 4 —_———
* lo|? [ 2 R;
NN, cota—-NZ]
lol? ’

where the comma indicates partial derivative and N,
=dN /oa.
Wenow consider a space-time V * with the metric tensor

g, =S%(t)[g,, +2H1,1,], (2.12)

where g, is the metric tensor of the Einstein universe de-
scribed by (2.2), S is an arbitrary function of 7, and H is a
scalar function of coordinates.

The expression for Einstein tensor for the space-time V' *
has been worked out by Taub.’> We state this expression for
ready reference:

G =X’ —2HI*"V)U,U, —N*VI,
+ [X/2(1 + H) — P* — (T, + E)/S*16%y
+ m*(m'm, + m’m,) — A(m’l, + m, V)
—A(m’l, + m,F), (2.13)
where various quantities are given by

SX=2(8S"-S2?—1/R%),

S?P*= — (SS' +25"24+2/R2),

—S'N*= —No+ 2J2(Hyn),S' + 4Hy/R ],
S4r* =@y, P —T,—E, (2.14)
S4A = A,

To=4(H),(Z+Z) —H,ZZ + H,R, I 17,
E=HySS" + 25 (H*),,

No = — Hy,,,8"" — 2@y, n°, Ay = Do, m?,

= (Hol” )|Pﬂ (HI ulpo + 2H00 ulp g
- HOIU on
Here
H0=HS2. (2.15)

It should be noted that we have used the results (2.1)-
(2.12) in arriving at the expression (2.13) of the Einstein
tensor. An overbar indicates differentiaton with respect to .

lil. THE ELECTROMAGNETIC FIELD

We choose the electromagnetic four-potential 4 ¥ as

AX=¢l%, 3.1
where /¥ =/, and ¢ is a function of coordinates.

Therefore

I =Pr/s2 (3.2)
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The electromagnetic field tensor corresponding to the choice
(3.1) is given by

Fs =¢(1I4|7’ "Irlft) +é,0 —8.0, (3.3)

F‘FYZS—4[¢(II‘|1’_IY|#) + &I — I ). (3.4)
Let us now try to solve the source-free Maxwell equations
F ;';"’ = 0, where the semicolon indicates the covariant deriv-
ative with respect to the metric tensor g%,. The relations
F#l, =0,F*m, =0,and F *"m, = 0imply the follow-
ing equations:

b 4 __\2
b+ 8, H(ZEE) 1 f(Z2Z) 0, @)
zZp,m* —1¢Z ,m" — ($,17),m"

—¢,m*((Z+2Z)/2] = (3.6)
Zy , m* —19Z ,m* — (¢,,17) , m"

- ¢, m(Z+2)/2] = (3.7)
Equation (3.5) will determine ¢ as

$=10Z+2), Q,I*=0. (3.8)
Substituting ¢ from (3.8) in (3.6) and (3.7) we get

Q,mt=0, Q. =0. ( 3,9)

Since Q is required to be real and it satisfies Q ,/ =
Q,m' =0, Q, m" =0, the integrability conditions of these
equations imply that we must have

(I"my, —mlY; )Q# =0,
(l?’m# _m'i’lﬂ )Q
(m"mf, —m”m“,)Q =0.

These conditions can be expressed as Q nt (Z — Z) =
AsZ #£Z (i.e., 0#0), we have Q.n" = 0 Thus Qis a con-
stant and, consequently,

¢ =1Q(Z + Z), (3.10)

where Q is a constant. Substituting this value of ¢ in
F¥"n, =0, we have verified that this equation is identically
satlsﬁed The electromagnetic energy tensor E ¥, is given by

E}, =g Fy.F — g% F'F,. (3.11)
Using (3.3) and (3.4) in (3.11) we obtain

RISy

+ ¢2(Z;—Z)(m’m, + m’'m,,)

+14¢ 7 (Z — Z) (I
— ¢, m* (Z — Z)(F i, + m'l,)
+ 6,071, — ,1°(¢7L, + ¢,17).

SEY =

‘m, + m’l,)

(3.12)

IV. THE TWO-FLUID INTERPRETATION

In this section we shall try to solve the Einstein—-Max-
well equations corresponding to a mixture of perfect fluid,
null fluid, and source-free electromagnetic fields in terms of
the metric tensor g%, . The energy momentum tensor for such
a mixture is given by
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T =w+p)V/V*+pbl +ZI7I*+E, (41)
where V°# are the components of the flow vector satisfying
V' V* = — 1. Here w and p are the density and the pres-

sure of the perfect fluid, respectively. Also 2 is the radiation
density of the null fluid. Since

8 = —1'n, —n'l, + W'm, +m’m,, (4.2)
the Einstein tensor given by (2.13) may be written as
G, =X(g“ —2HI*I"YU,U, + N*FI,
+ [AX(1 + H) — P* + (1/8)9,,1718,
+m*('n, +n'l)) ~ AR L, + 1Y)
—~A(m’l, +m, 1Y), (4.3)

where X, N*, P*, ®,,, N *, and N are defined by (2.14). Let
us choose the components V2 of the flow vector as

V*=5(a*U, +26*,), (4.4)
where
a*? = (14+ H)y/[(1 + H)? — Q/X){N*~ H,S *}'?

(4.5)

and

a*’ (1 + H) +2a*B*=1. 4.6)
One can easily check that

gHVEVE=V"HV%= —1 4.7
and

SV = a*U" + 2I*(B* + a*H). (4.8)

In view of (4.7), the choice (4.4) of V'} is justified. The
expression (4.3) for G’ can now be simplified to

G =(X/a*) V™ V¥
— [IX(1 + H) — P* + (1/8)®, 17185,

- [N* + 281 h é—f—)]ﬂzy

a* a¥

+ [7* — XB*/a*1(n’l, +1"n,)
~ MA@l +Pm,) —Am’l, +1'm,). (49)

Now, the Einstein-Maxwell equations are
G, =8xT, (4.10)

where T’} is given by (4.1). Substituting G, from (4.3) and
E7 from (3.12) in (4.10) one can verify that if

XB*/a* = m* + (87/S) [(4,17)? + 420  (4.11)
holds, then we have
— 87 (p + w) =X /a*?, (4.12)
xg* 1 <I>o,,l”]
+ (47/S*) [4°Q% + ($,17)7], (4.13)
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873 2XB* B*\ 87
— S2 = —N*—:;—-(I +H“&T)+':g‘;‘¢,p¢’p
+ (16/8*) 74, 1%8 ,n*, (4.14)
and
A+ (1/8)[8mp, 178 ,m* + 4wdd ,m* (Z ~ Z)] =0.
(4.15)

Equation (4.15) can be easily integrated to have the function
H,as

Hy=\M(Z+Z) ~2mQ*2ZZ + 47Q*/R%,  (4.16)
where M is a constant. Thusif (4.11) holds we get a solution
of the field equations (4.10) with p, w, and £ given by

(4.12), (4.13), and (4.14). The explicit expressions for
these physical parameters are

—8mp = (1/8%)(2SS" + S? + 1/R})

+ (Hy/S*H(SS" =S — 1/R3), (4.17)
— 87w = — (3/S)(S?* 4+ 1/R?)
+ (Hy/S*)(SS'M —S'2 4+ 3/R})
— (W2/81)S ' (Hi?),,, (4.18)
— 87382 =4Hy/R} + 228 (Ho"),
+24 [ —2H/R} + H,SS"
+\28'(Hi?), 1, (4.19) -
where
A1 +_}g_g{ —2Hy/R} + H,SS" + 25 ' (H,1?),,}
s? 252(SSM - 8§12 1/RY)
(4.20)
and
(Holp)lp = (Honp)gp =W(ZZ— Z/R?))
+47QUZ +Z)/R 2. 4.21)

The quantity Z is given by (2.9). The explicit form of
the line element is given by

ds® = S?*[ —dt? +dr’ — 2ksin’ adBdr + (jp|*/N*)da?
+ (|p|* + k * sin” a)sin® a dB ?]

+ Hy( — dt —dr + ksin® a dB)* (4.22)
with
V2ZM(R} —k7) (r) (r)
Hy= — ——————sin{— ] cos| —
Rqlp| R, R,

2 2
+£”—Q2—-— f«‘gg%—[kzN2 cos® a
R35 lo|
RZ—k?
+ L&T_l sinz(——r-—)cosz(—i-)] . (4.23)
R 0 RO RO
When R - « and § = 1, it can be easily seen that Eq. (4.11)
is satisfied. In this case we have p =0, w =0, and 2 =0.
This corresponds to usual Kerr-Newman metric. Thus we
can interpret the metric (4.22) as the Kerr~Newman metric

in the background of the closed Robertson-Walker universe.
We know that the cosmological constant is nonzero for
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the Einstein static universe. If we incorporate the cosmologi-
cal constant A in the field equations (4.10), and if we take
S =1, we have

—8mp= — A+ (1 —Hy)/R},

—8mw=A—-3(1—Hy/R}, 2=0,
where H, is given by (4.23). In this case Eq. (4.11) is also
satisfied.

Thus the case .S = 1 represents the Kerr-Newman met-

ric in the background of the Einstein universe discussed by
Patel and Trivedi.*

(4.24)

V. THE KERR-NEWMAN METRIC IN EINSTEIN-DE
SITTER BACKGROUND

We now consider a special case in which the Robertson—
Walker metric has flat spatial sections ¢ = const. Thus we
take Ry— oo. We shall further assume that the background
space-time is pressure-free. Thus we assume that the func-
tion .S satisfies the differential equation

2SS + §12=0. (5.1)
The solution of (5.1) can be expressed as
S =[3(1 = 1,)/Tp)*"?, (5.2)

where t, and T, are constants of integration. Let us define T
by

T=T,S"2=T,[3(t—t,)/T,]">. (5.3)
It is painless to see that

S'=2T. (5.4)
Using Ry— «. In (4.23) we obtain

Hy= 2mr — 4re®)/|p|?, (5.5)
with

o IPI?=r+k?cos’a. (5.6)

The constants m and ¢ are defined by

2m= —\2M and e=Q. (5.7)

In this case, we can easily establish the following results:

X= —12/8°T?% P*= —6/S°T?
B* m(T+r) 27re?
a* 3plPs? " 3pf’s?’
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16me?k 2 sin® @
S4lp|6 ’

x__8m
TSl
D,/ + Ty =0,
Am(T +r) 8me®
T?p|> TPl
Using the results (5.8) it is easy to see that Eq. (4.11) is

satisfied. It is a consequence of the above equations (4.12)—
(4.14) that

(5.8)

E= —

8mp = 12(mr — 2me*)/S*|p|*T?, (5.9)
12 [ m(r—2T) 8me?

87w = 1+ - , 5.10
S T2 T 3pPsTE | Jp’sTA (3.10)

and

8m [ m(T+r)(5r—T)]
872 =
" T TS 3lpPs”

+ 1607%*/3|p|*S *T2 . (5.11)

The explicit form of the metric in this case is
ds* =S*(t)[ —dt?> +dr* — 2k sinf a dB dr
+ (P + k% cos? a)da? + (P + k?)sin® a dB?)

2mr — 4re? . 2 2
+(r2+kzcos2a)( dt — dr + k sin® a df)?,
(5.12)

where S is given by (5.2).
The Metric (5.12) describes the Kerr—-Newman metric
in the background of the Einstein—de Sitter universe.
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Following Ashtekar’s new Hamiltonian formulation of general relativity [“A new

Hamiltonian formulation of general relativity,” Syracuse University preprint, 1986; Phys. Rev.
Lett. 57, 2244 (1986); Proceedings of the Florence Conference on “Constrained Systems”
(World Scientific, Singapore, 1986) ], the results of Arms, Fischer, Marsden, and Moncrief
[Ann. Inst. H. Poincaré 33, 147 (1980); Ann. Phys. (NY) 144, 81 (1982)] on the structure of
the space of solutions of vacuum Einstein equations in the case of space-times admitting a
compact Cauchy hypersurface are rederived and extended.

1. INTRODUCTION

Recently Ashtekar' gave a new Hamiltonian formula-
tion of general relativity using what he called “new vari-
ables.” One of the variables is a densitized soldering form
° .2, which is an isomorphism between the space of complex
tangent vectors ¥° at any point of a three-manifold 2 (a
Cauchy hypersurface of a space-time) and SU(2) [or
SL(2,C)] spinors ¥, at that point whose components
form a 2 X2 anti-Hermitian traceless matrix. Another con-
jugate variable is a connection one-form A4,,,,” with values in
the Lie algebra of SU(2) corresponding to a certain connec-
tion, now known as the Ashtekar-Sen—Witten (ASW) con-
nection (see Renteln? and references therein). Using these
as dynamical variables, constraints of Einstein’s theory in
the ADM formalism simply state that &*,? satisfies the
Gauss-law constraint w.r.t. 4,,,” and that the curvature
form F,,,” of 4, satisfies certain purely algebraic condi-
tions involving &°,%. In particular, the constraints are at
worst quadratic in these variables. In the ADM formalism,
constraints contain nonpolynomial functions of the three-
metric. This simplification occurs because A,,," has infor-
mation about both the three-metric and its conjugate mo-
mentum. In the four-dimensional space-time picture, 4,,,"
turns out to be a potential for the self-dual part of Weyl
curvature. One of the striking features of this formulation is
the simplification of Einstein’s equations in the half-flat case.
Here, the equations are remarkably simple and resemble
Euler’s equations for rigid bodies. This supports the conjec-
ture of exact integrability of the half-flat equation. For other
simplifications, comments, and discussions, we refer the
reader to Ref. 1.

This Hamiltonian formulation can be derived from a
manifestly covariant four-dimensional Lagrangian formula-
tion in which 4, (or 4,,, a four-quantity) appears as a con-
nection one-form with values in the Lie algebra of SL(2,C)
and & is the conjugate momentum L /94, corresponding
to a suitable Lagrangian constructed from the curvature
form F,, corresponding to 4, and X, *2=i(y,*y,,."
—7,**7,4-®). The action is

1:]2,,8/\&‘.
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The y giving 2, can be constructed as follows. Given a
SL(2,C) principal bundle on space-time S = 2 X R, I be-
ing a spacelike hypersurface, let ¥ denote the two-dimen-
sional complex vector space of Weyl spinors at each point
x€*S. Then V@ ¥ (¥ being the complex conjugate) is also a
vector space, the space of 1-1 spinors. If W denotes cotan-
gent space at x on S, then ¥ is a section of the associated
tensor bundle V'@ Ve W. Thus ¥, is a Hermitian matrix
valued one-form and A4, is a connection one-form [on the
SL(2,C) bundle on *S] with values in the Lie algebra of
SL(2,C). For further details, see Samuel.?

Following this new variables approach we, in this paper,
rederive and extend the results of Fisher et al.* (hereafter
referred to as FMM) and Arms et al.® (hereafter referred to
as AMM) on the structure of the space of solutions of Ein-
stein’s equations when a space-time admits a compact
Cauchy hypersurface. The word “extend” is used in the
sense that Ashtekar’s formulation gives compiex general rel-
ativity. Simplicity of constraint equations in new variables
simplify calculations of the FMM program (deriving results
of FMM and AMM for vaccum Einstein or for Einstein
equations coupled to matter fields is referred to as the FMM
program) and many features of the FMM program for cou-
pled Einstein-Yang-Mills fields appear in this setting. More
simplifications seem to appear in the treatment of the FMM
program for the coupled Einstein—-Yang-Mills system via
new variables. This happens because the new variables for-
mulation provides a natural embedding of the constraint
surface of Einstein phase-space into that of Yang-Mills.
This embedding seems to provide new tools to analyze a
number of issues in both classical and quantum gravity. For
detailed comments we refer the reader to Ref. 1, Jacobson
and Smolin,® and Renteln and Smolin.”

In Sec. 11, we give notation and a brief introduction to
the new variables approach and write the connection one-
form, its curvature form, and other identities that will be
used later. Again, for details, see Ref. 1. In Sec. II1, we prove
the first steps of the FMM program, namely ellipticity of the
adjoint operator appearing in the evolution equations and
linearized stability of new constraint equations by assuming
conditions on the spacelike hypersurface X similar to Arms®
and Fischer and Marsden.’ We then prove a result that en-
ables us to identify the triplet (N,N,,N) of the lapse func-
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tion, shift field, and Lie algebra-valued function with sym-
metrics that a space-time admits. This follows the procedure
used by Arms.® In Sec. IV, we give the remaining steps of the
FMM program, using the Kuranishi map and the conical
structure of singularities. Since FMM and AMM contain
detailed expositions of these results, we only outline their
procedure and give the necessary calculations in terms of the
new variables. In Sec. V, we discuss future work related to
these results.

Il. NEW VARIABLES—A BRIEF INTRODUCTION

Fix a compact three-manifold =. The configuration
space C in the ADM-formalism is the space of all positive
definite metrics ¢,, on 2. Fix a point ¢, in C. A tangent
vector at g, is represented by a second rank symmetric ten-
sor field A, on 3. A cotangent vector is therefore represent-
ed by a second rank symmetric tensor density p*® of weight
1. The phase space " of classical general relativity (ADM) is
the cotangent bundle over C. Thus a point of T is a pair
(9.5,0"®). Here T has a natural symplectic structure
whose action at a point (g,p) of " on tangent vectors (4,w)
and (4 ',w') at that point is given by

B gy ((hy10), (k")) = f (wh' —w'-h), M

wherew-h = w* h,, . Not all points of T are accessible to the
vacuum gravitational field: There are constraints given by

Ca (q!P) = _2qamanm"=09 (2)
Vg G ( a 1,

C(gp) = ——R+—(p"pa ——p) =0, (3)
G V7 *2

where D and R are, respectively, the derivative operator and

the scalar curvature of g,,, Vg = det g, p> = (tr p)?, and
tr p = q,, p®®. These constraint equations and correspond-
ing evolution equations which together are equivalent to
Einstein field equations, are treated in detail in ADM' and
Fischer and Marsden.® We shall follow Refs. 8 and 9 for
notation and other technical details.

Phase space I is then extended to incorporate spinor
fields. Here X is not equipped with an a priori metric. So we
first spell out the sense in which the fields are spinorial.

In addition to tensor fields ¢ "*%,...; on 3, we also con-
sider objects A4 ,u, with internal SU(2) indices. Mathemat-
ically these fields are cross sections of a vector bundle over 2
whose fibers are two-(complex) dimensional vector spaces,
equipped with preferred nondegenerate two-forms €*# and
€45 . We shall raise and lower the internal indices with these
forms:

At =e€"Ap, p, =pp,. 4)

We now introduce soldering forms that tie the abstract-
ly defined internal indices to the tangent space of X, thereby
making them spinor indices. Consider isomorphisms o,*#
from the tangent vectors A° to X to the trace-free, second
rank, Hermitian spinors A 4%: 1 42 = g, 484 2, Denote the in-
verse mapping by 0° ;. Properties of ¢, the Hermitian conju-
gation, and o imply that

AB_ CD
Gap = 0,770, €4c€pp = —Tro,op (5)
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is a positive definite three-metric on 2. Thus, given a specific
o, we can go back to the standard spinorial analysis (see the
Appendix of Ref. 1). This o (densitized) is the basic dynam-
ical variable of Ashtekar’s approach. Metric ¢,, is to be
thought of as a secondary object, derived from the primary
dynamical variable o, 2.

The new extended phase space I" can now be defined.
Fix a soldering form 0°,, (and its inverse o,4%) whose con-
nection D is flat. Let C be the space of all soldering forms
o° 5. Thus Cis the new configuration space. Given any ¢ in
C, we obtain ag,, in C via (5). If o, and o, project down the
same metric g,, then they are related by a local SU(2) trans-
formation. Thus the enlargement of the configuration space
from C to C is brought about because of the freedom to per-
form internal SU(2) rotations. While ¢,, has six real com-
ponents per space point, 0° .z has nine; the new three degrees
of freedom correspond to precisely the three SU(2) rota-
tions.

The momentum conjugate to 0*  is a density of weight
1, M,“2, whose index structure is opposite to that of 0°,5.
The action of the cotangent vector M, “® on any tangent vec-
tor (60)° 5 at a point 0”5 of Cis given by

M(60) = f M, A5(50)° ;. (6)
=

The extended phase space I' is the cotangent bundle over C.
Thus a point of T is a pair (6°,5,M,*?). The natural sym-
plectic structure 2 on I is given by

Q(a’,M) ((60’5M), (50",5M '))

=J (8M,*%)(80"%15) — (BM',*®) (80" 3),  (T)
P

where (60,6M) and (80°,6M ') are any two tangent vectors
at the point (0,M) of I'. The Hamiltonian vector field and
Poisson brackets are given as usual.

We now describe the constraints. From the Hamilto-
nian viewpoint, the SU(2) rotations are gauge motions,
hence their generating functionals should vanish. So the
three new constraints are

Cos =M[aABUb 148 =M, 1=0
or (8)
CH8 = gMUAM BVe, . =0.

Set M*® = p°*. (In the noncompact case, M‘**> = p°® and
appropriate boundary conditions are to be satisfied by p® in
order that this holds.) Then the remaining constraints are
the standard ones:

Ca (G’M) = _anmDn pmn=01 (2')

C(o,M) = —\JgR + (1/Jq) (p*p., — 4 p*) =0. (39

Hereafter, we take G =1 since we are not interested in
strong coupling limit.

Thus wenow have 3 + 3 + 1 = 7 compdnents. The con-
figuration variable 0°,; has nine components per space
point. Thus we have two degrees of freedom per space point.
Canonical transformations generated by (2) and (3) retain
their usual meaning. Modulo the new constraints (8), g,,
and p® have the same Poisson brackets (see Ref. 1). Thus
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the enlargement of the phase space " is compatible with the
symplectic structure {.

In transition from I" to T, the constraint equations (2)
and (3) have remained intact. The addition of new degrees
of freedom does not by itself simplify the constraints. The
key step in the simplification is the introduction of new vari-
ables. The extension to I' is necessary because these variables
cannot be defined on T".

Fix a point (0% ,5,M,*?) of . Introduce two connec-
tions ¥ &, which act on tensor and spinor fields on (2,0):

2D Aoy =D Apy t /N2 0 Ay (9
where D, is the connection that annihilates the given o7,
and where I1,,, " is given by

HaMN =q 1/2(MaMN - WbAB ABO'aMN)

or
MaMN=\/a(HaMN— nbABUbABUaMN)' (10)

Thus IT,#?is related to M, *? in the same way that the extrin-
sic curvature k,, is related to p*°:

pab=‘/a(kab_kmnqm"qab). (11)

Note that I1,, = — Tr I, o, is not necessarily symmetric.

As in gauge theories, it is convenient to work with con-
nection one-forms 4, in place of derivative operators. So,
fix a fiducial connection d, and for simplicity assume that d,
commutes with Hermitian conjugation, 3,4 ; = (3,4;)"
and has zero internal curvature, 9,3, 4, = 0. Set

iga'{bM = aa/i'bM + tAaMN/le (12)
so that (9) gives
* A =T £ (ADI,,", (13)

where I' are the spin connection one-forms of D:
(D, —3,)Apy =Top™An.

Thus * A4 contains information about both o and M and
* A or ~ A is one of the new variables. It follows that (see Ref.
1) * A (or “A4) constitute a set of commuting variables.
Also Poisson brackets between o ,, and 4, “? are simple. Set

& 5 =q0" 5. Then

{6° (x),0™ 4w (x)} = 0.

Using the fact that I1,%? and 6™,y are canonically conju-
gate,

{HGAB(X),&MMN (y)} = 5a '"5“M5B)N5(x,y),
it follows that

{£4,%2(x),67un N} = £ (1/2)8“4,8” y8(x.p).
(14)

Thus & may be thought of as being “canonically conjugate”
to T A4,. & and * 4, are Ashtekar’s new dynamical vari-
ables.

A. Revised constraint equations

Constraint equations (8), (2), and (3) can now be reex-
pressed in terms of the new variables 5 and *4,.
It turns out that

188 J. Math. Phys., Vol. 29, No. 1, January 1988

*D,6% = + \/iiM[ab 104 M0 gz

Hence (8) is equivalent to

*9,6°%=0. (8)
Since the divergence of a tensor density of weight 1 is inde-

pendent of the choice of the derivative operator, 4 ,5° , 2
can be expanded knowing only the action

D Ay = aa/‘_LM + iAaMNﬂ'N (15)
of * & on internal indices. We then have
igayABEaayAB+ [iAa’&a]AB:O' (8”)

Thus (8) has been reexpressed in terms of the new variables.
Next, define spinorial curvature of ¥ & by

2Pt AN =2%*D D, Arps (16)
so that

tFum’ =20, ¥4y~ + [*4,,%4, 14" (16')
Thus using (9), one obtains
*Fope = Rape — (1N2) €0t T, M, £ \2iD 1N, , (1)

where R, is the spinorial curvature of D. We have
R, = — 2R, Then it follows that

Troﬂ iFab = (l/zﬁ)(nam an - nbm Han )em"a
F (i/N2)D*(11,, — Tg,,)

= F (i/N2)D*(ky — kqo5), (18)

where ~ denotes the equality modulo constraint (8). Thus
constraint (2) can be rewritten as

0=C,(64)= —24,,D, p™" = FN2Tr5"F,, (2")

in terms of the new basic variables &°,, and *A4,48. For
constraint (3) we note that

Tr 0°0*F,, = — (1/2)e"*F,,,
=}(R + I* — 11, 11**) F ie**D, 11,

=5(R+k2—k,,,,k“"). (19)
Hence (3) becomes
0= —2¢~'?Tr 3°3°F,,. (3”)

Thus the set of Einstein constraint equations can be rewrit-
ten in terms of the new variables as

Ce(6,4)= —\2i9 ,6°,% =0, (8™
C,(5,4)= — 2\2i Tr&"F,,, =0, (2™)
C(6,4)= — 2 Tr 6°a°F,, = 0. (3"

For remarks on these polynomial constraint equations
see the first paper cited in Ref. 1.

B. Hamiltonian evolution equations

Evolution equations can be written by the usual proce-
dure using the full Hamiltonian of the theory:

H =f Tr A, éz— NC(6,4) — N°C,(5,4)
s ot
— N, 5(Cs(3,4))p™. (20)
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Here N is a lapse function of density minus one, N° is a shift
vector field, and N, ® is a function on £ with values in the
Lie algebra of SU(2).

The same Hamiltonian can also be obtained from the
manifestly covariant four-Lagrangian density

L= Tr(3,,Fap),

i1#**® being the Levi-Civita tensor density as given by Sam-
uel.?

In any case, the evolution equations can be written in
compact notation as in Fischer—-Marsden®

N
1% = — by | 1)
ot l4 N.®
‘vA
Here J is the complex structure
-
I 0
and
®(5,4) =(C(6,4),C,(6,4),C5(,4)) (22)

is regarded as a mapping from (ye Y,A'@¥) into
(A°*x*(A°® ¥ )~ *), where ¥ = Lie algebra of SU(2)
and

¥eY = {smooth tensorial & -valued vector densi-
tieson X},

Are¥ = {smooth tensorial & -valued k-forms on
3},

A%* = {smooth scalar densities of weight 2 on
3},

x* = {smooth one-form densities on 3},

Ao % = {smooth tensorial ¥-valued scalar densi-
tieson =}, _

(A°® ¥)~ = quotient of A’ @ ¥ by constant function

densities with values in the center of &,
(A°® @)~ * = {imagesof & under Z,}
(see Ref. 8, p. 446 for more explanation), D® denotes the
Fréchet derivative of ® and D®* is the L %-adjoint of the
linear operator D®(&,4). For more details about this form
of evolution equations, see Ref. 9.

Explicitly, evolution equations are given as

%{ =49, (N6""6"") + H2iD (N “5")) — JZ[N,],

(23)
aAa - . b .
P 2[N&*F,, | — 2J2iN°F,, —2iZ ,N. (24)
In the functionat derivative notations,
DP(6,4)*-(N,N“.N)
S (NC+N°C, + Tr NCg)
oo -
=15 , (25)
-2 (NC+ N°C, + Tr NCg)
64 -
so that
90 _ 3 (NC+4N°C, +TrNC,) (23"
b4 a -
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and

6_A= _5 (NC+ N°C, + Tr NC;).
ot o -
Here we follow Ashtekar’s formulation where the lapse nat-
urally arises as a density of weight minus one in calculating
the functional derivatives (i.e., adjoints) because the scalar
constraint is a density of weight 2. Thus the integration can
be carried out without reference to a specific volume ele-
ment.

(24"

lil. LINEARIZED THEORY

A. Ellipticity of D®* and linearized stability

The main result of this section is the following.

Theorem 1: Constraint equations (8'), (2'), and (3')
are linearization stable at (&,4) if the following conditions
are satisfied on 2: (1) ¢,,I1°® is constant, (2) I1°® is not
identically zero or ¢, is not flat (i.e., o does not correspond
toaflatg,,); (3) if V% isavectorfieldon 2 and N, % isa ¥
valued function on X such that .¥ y&° — 5[1}’,65 ]=0and
N*F,, =19 N, then N* = 0 and the image of N lies in the
center of &.

Our I1°® here coincides with the Fischer-Marsden® k% ;
.2 v is the gauge covariant Lie derivative of &, and .¥ 4
=N "°F,, is the gauge covariant Lie derivative of 4 (cf. Ref.
8).

As we shall see below, the linearization stability of con-
straint equations is equivalent to that of Einstein field equa-
tions. For a definition of linearization stability and other
theoretical details, see Ref. 9 and FMM. Before we give the
proof of Theorem 1, we derive some useful facts regarding
linearized evolution equations that will be needed later. We
work with the space-time metric

g, dx* dx”= — (N?> — N°N,)dt*+ 2N, dx" dt
+ g,y dx° dx”, (26)
whereg,, = — Tro,0,.Let%h v be asolution of the linear-

ized Einstein equations. Let 4,, denote connection one-form
on the pricipal SU(2) [or SL(2,C) ] bundle on space-time 4§
(cf. Ref. 3) with values in the Lie algebra of SU(2) or
SL(2,C). [For reduction of SL(2,C) spinors to SU(2) spin-
ors see Ref. 1 or Renteln? and Sen.'" So we start with g and
*h. The variables g, p, N, N N are uniquely and differentia-
bly defined by the variables ‘g and 4, and their derivatives,
and vice versa (cf. Arms,® Sec. 3). Thus the linearized
theorem for Lagrangian variables (see below) is equivalent
to a result for the linearized evolution (Hamiltonian) equa-
tions,

[N
9 [’7] = — Job| D@ (5.4)* | N2 |- [’7]
dt LB B
LN
I
—JoD® (o, )*| Y|,
V]
where (7,B) are linearized (&,4) and (L,Y,V) are linear-
ized (N,N”,N). Equation (27) follows similarly as in Ref. 9,
Sec. 4. For initial data for the linearized theorem, we have

(27)
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(n,B) on X satisfying the linearized constraint equation
D®(5,4)(9,B) =0. (28)

To construct initial data for the Lagrangian version, we
need, in addition, to specify (L,Y,V) and their first deriva-
tives on 3. From these, we define *4 on X by

4hab = hﬂb’ 4h0t1 = - (nba + Nas )Nb_ Yas
*hgo= — 2NL + 2N, Y + h,,N°N®.
Here 7,, = —Trn,0,. With the help of *h, we find

w = linearized p given by DP,(‘g)-*h = (hw), where
P;(°g) = (¢,p). Then B,, = — Tr B0, is given by

Bab = 6.a mn amhnb + iwab'

From this, B,,," can be determined. With this B,,," we can
now define B,,,," (linearized 4,, ) by

‘B =B.™, “BopN= — Vo 29"
Thus the background metric “g and 4 o determine (N,N*,N)
everywhere (4" = — Ny,™). Using (27), we can find
oh,,/3t and 3B,,,~ /3t on 2. So, we know the first deriva-
tivesof h, B, N, N°, L, Y, V on 2, and by differentiating (29)
and (29'), we can determine d *h,,,, /0t or 3 *B,,,," /3t. Thus
we get the following result analogous to Proposition 2B of
Ref. 8.

Lemma 1: Suppose “g is a solution of the Einstein equa-
tion on *S and we have initial data on I for the linearized
system as above. Then there is a solution *k that determines
solution *B on *S of the linearized Lagrangian field equations
with the given initial data. Any two such *4 differ by a linear-
ized coordinate transformation and any two such “B differ
by a linearized coordinate and gauge transformation:

4il -— 4h = Lry"g,

B —*B= 7.4~ D"V,
with “2,, (3/81) 7,‘, 4¥, and (8 /) *V are all zero on I.
Equivalently, for each choice of gauge (N,N°,N) and linear-
ized gauge (L,Y,¥) on *S = 2 X R, the linearized equations
(27) have a unique solution (#,B) [or (A,w)].

Remark: In contrast to the Einstein—Yang-~Mills system
treated by Arms,® quantities *4 and *B appearing here are
not independent but are related through their projected
three-dimensional quantities B,,, w,,, and A,,,.

Proof of Lemma 1 proceeds exactly as in Ref. 8, Proposi-
tion 2B, pp. 448 and 449, except that *4 and *B are interrelat-
ed. First *Y is determined uniquely through a certain hyper-
bolic equation and then using *¥, 4V is determined uniquely
by another hyperbolic equation. They satisfy Eqgs. (30).
Thus we can conclude (Refs. 8 and 9) as follows.

Lemma 2: Einstein field equations are linearization sta-
ble at *g if and only if the constraint equations are lineariza-
tion stable at (5,4).

We now proceed to give the proof of Theorem 1. Again,
as in Refs. 8 and 9, it is sufficient to show that D®(5,4)* is
an elliptic operator and then to show that under the condi-
tions of Theorem 1, D® (5,4 )* is injective. This will give the
linearization stability of the constraint equations
®(5,4) = 0and hence by Lemma 2, stability of the Einstein
field equations at any solution “g that projects the data (5,4)
on the hypersurface through (g,p). Recall that 4 is deter-

(29)

(30)
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mined by extrinsic curvature and spin connection through
Eq. (13).
DY(G,4)* is elliptic:
N
Do(G,4)*-|N*
N
3 [ ~2[N&*F,, ]| + 22N *F,, +\2iD ,N
49 ,(No“")) + 42iD , (N ")) — \2i[N,5" ]
(31)
The principal symbol of D®(&,4)*, for each vector éeT*3,
is given by the map
S(£): (N,N°N,*)
—(NE, 616" — ig"E ,N® + i£,N°3"i,N,*).
Here, D®(5,4)* will be elliptic if we show that the map
S(&) isinjective for every £ #0. So, if £ A0 and S(£) (N,N°,
N, %) =0, then we have
NE, (66" B —i6" BE,N* + iE, N°3*,B=0
and §,N,® =0. Since £ #0, we get from the second equa-
tion,
£%,N,2=0or'||£|I’N,2=0, or N=0. (32a)
Multiplying the first equation by &° and taking Tr, we get
—_ ﬁNgaeabc + i(qacé-aNb . qbcé—aNa) =0,

Equating the real part to zero, we get N&,€** = 0, which
gives N&, €€, =0 or N¢, =0 and so, as before, since
& #0, we get

N=0. (32b)

Finally, equating the imaginary part to zero, we get £°N®
— ¢™€,N°=0, which, after contracting by gq,., gives
—26,N®=0 or £,N®=0. So substituting in £°N°
—¢"E,N°=0, we get £N°=0, or £,£°N*=0, or
|l€ [I*N* = 0. So, again, since £ #0 we get

Nt =0.
Thus from (32a)-(32c) we get

(32c)

SE)NNN,)=0=>N=0, N°=0, N,°=0.
Hence D®(5,4)* is elliptic.

D®(5,4)*is injective under conditions of Theorem 1: As-
sume D®(5,4)*: (N,N °,N) = 0. This gives, from Eq. (31),

49 ,(No'6")) + 42iD (N 6"y — 2i[N,5*] =0

REID

and

2[N&*F,,] — 22iN*F,, +2i%9 ,N = 0. (31")
Multiplying (31’) by 6%, taking Tr, using the expression

D,0%45 =D, 0" 45 + (VD1 M0’

+ GADzM0" 1,

and keeping in mind that D, annihilates o”, we get
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— V2D, Ne®® + Ni(IT* — (tr T)g*)
+ i — g®D, N + DN*® — (i/\D)N°IL e, )
+ ‘/ichebdc =0.

Here we have used the constraint equation &,6° =0 and
the fact that IT,, becomes an extrinsic curvature if & ,6°

= 0; and also the identity €°* = — 2 Tr 0°0%0*. Finally,
N, = + N,%0z*. The above equation can be written as
—V2((D, N)e® — 4N I,
+ (N (I — (tr IDg™) + D°N® — (D,N°)¢*)
— 2iN € = 0. (31
Contracting this equation with ¢*¢, we get
D,N¢= — N(trII). (33)

Equating the imaginary part of (31”) to zero and using (33)
we get

DN®= — NTI* + 2N, . (34)
Now, if we equate the real part of (31™) to zero, and contract
by €., We get

D,N—-iNNl,, =
Operating on D” gives

AN —D?(N°Il,,) =0
or

AN —{(DPN9I,, —N°D*II,, =
By the constraint equation C, =0, D’II,, = D?(tr Il)q,,,

and by our assumption, tr II = const, this becomes zero. So
we have

AN —{(DPNI,, =
Substituting from (34) for DN °, we get

AN +iNTI*I,, =
because €#I1,, =0, II,, being symmetric. This II is the
Fischer-Marsden (Ref. 9) IT — 4(tr IT)g. So using the ellip-
tic operator theory, NV = 0 unless I = 0 in which case N is
constant. In the latter case (i.e., if I =0), F,,. = R,,, real.
But then, Eq. (31”), after multiplying by ° and taking Tr,
gives

— V2iNe*™ R ;. + N°¢“Rp — D ,N¢=0.

Equating the imaginary part to zero and using

R, = (1/2{2)R,,, €.,
we get NR,?=0o0r R, =0if N #0, i.e, g, is flat.
But II = 0 and g is flat is ruled out by condition (2) of
Theorem 1. Hence [1#0 and so N =0.
Substituting N = 0in (31’) and (31"), we get
2,(Ng")) —1[N,g"]1 =0
and
N, —-12 ,N=0
or
L N0

& —i[NG*]1 =0, — LA, —4D N=0.

(35)
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But then condition (3) of the theorem give N* = 0 and the
image of NV lies in the center of & . But then Nis a function in
the usual sense because it is invariant under gauge transfor-
mations (internal rotations) and thus globally defined. Thus
if N =0, N* = 0 and the image of N lies in the center of ¥,
then (317) gives Z,N =0 which now becomes D,N=0
or N = const in the center of 9,ie, N=0in (A°® 9)-
where (A°® &)~ is the quotient of A° ® 9 by the constant
functions with values in the center of & . Here (A% &)~
the L % dual of the space {Z,&}. Thus we have shown that
N=0,N" =0,and N =0in (A°® ¥ )~ . Hence D (5,4)*
is injective, and Theorem 1 is proved.

B. Group action and infinitesimal gauge covariance

Let P denote the principal bundle over S with group
G =SU(2) [or SL(2,C)] acting on the right. Let Q=P
restricted to =. Given a local section i: UC*S=>P, roi

= identity, where 7: P—*S is the projection map. If & de-
notes the connection one-form on P, then 4, = i*& and
F,, = i*Q, where Q) is the curvature of @. (These are quanti-
ties needed in Ref. 3 to give Lagrangian formulation of Ash-
tekar’s theory.) Here, A, = restriction of ‘4 to 3 = i* (&
restricted to @) and F,, = restriction of F,,,, to X.

Let #* denote a semidirect product of the diffeomor-
phism group D ? of T and the gauge transformation group G.
The group G sits naturally in Z> and has the momentum
map Cg . On the other hand, D ? has no natural copy in %°.
There is an action of D 3 on T'*C (C: extended configuration
space) that is easily described in terms of its infinitesimal
generators. An element of the Lie algebra of D3 is a vector
field N* on X. For each point (5,4 )eT *C, lift N* horizontal-
ly to Q using the connection 4. Let N® denote this lifted
vector field and & be the tensorial object on @ corresponding
to . Then the infinitesimal generator at (&,4) of the %°
action on T *Cis given by (78 (Lx5), 78(Ly (@|y))), where
7o is a local section of Q. This is precisely (.£ y5,.% yA4),
where

L& = (DN — DN + N°D, 5
= (D,N*)& — &D,N*
L ND, 4 N4, (36)
and
fNAa =Nbea =Nb(aaAb _abAa + [Ab’Aa])'
(36)

These are the gauge-covariant Lie derivatives of Arms.® Also
0 = (C,,C¢) is the momentum map for the action of Z > on
T*C.

Using (36) and (36'), verification of infinitesimal gauge
covariance of $(5,4) = (Cg,C,,C) under the action of #°
is quite straightforward:

L nCo(F,4) = DC;(8,4) (L y5,-% yA),
LnC,(5,4) = DC,(5,4) (L y0,-L vA),

ZLnC(a,4) = DC(5,4) (L y6,-L yA), 37
or
-?Nd)(&,A) =D¢(&;A)'(KN&’3NA)~
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Verification of the first equation of (37) needs the Ja-
cobi identity of the Lie bracket. Calculations are straightfor-
ward and we omit them.

This infinitesimal covariance shows the fact that Ein-
stein equations are covarient under diffeomorphisms of
space-time. This is also an infinitesimal version of the fact
that constraint equations themselves are covariant under
bundle automorphisms.

The above result can now be used, as in FMM, Sec. 1, to
show the gauge invariance of D 2®(&,4) and that of Taub’s
conserved quantity,

T= f (NN“N,)-D*®(5,4)-((1,B),(n,B)), (38)
=

where (N,N°,N, %) can be identified with the vector fields
on the space-time bundle P by using Lemma 1 and the proce-
dure in Sec. IV C of Ref. 8.

Proofs of the above statements are quite similar to those
given in FMM, Sec. 1 and we omit them.

As remarked above, triplet (V,N”,N)edomain of DP*
can be identified as a vector field on the bundle. Also an
analog of Moncrief’s result holds: the kernel of D®(5,4)* is
isomorphic to the space of Killing fields (symmetries of the
fields) that a space-time admits. This result can be proved by
using Lemma 1 and the procedure used in Sec. IV C of
Arms,? with obvious modifications and omissions in the no-
tations.

Further, a nontrivial (N,N*,N)eker D®(5,4)* gives
rise to a second-order condition on linear perturbations

(7.B),

j (N.N°N)-D*®(5,4)-((1,B),(n,B)) =0.  (39)
p

Again, proceeding as in Ref. 8, Secs. IVE and IVF,
finally get the following analog of Theorem 2B of Ref. 8.

Theorem 2: The Einstein system is linearization stable at
the solution “g if and only if there are no symmetries on the
bundle P of the connection one-form & except the action of
the center of G on P. That is, if N° is a vector field on P, such
that L@ is zero, then N is a generator of the action of the
center of Gon P, i.e., N* is vertical and @ (N° ) = constin the
center of ¥.

Recall that *g can also be recovered from *4 and y, since
through Lagrangian formulation (Ref. 3) o can be known.
Thenoand*4 determinegq,, and the extrinsic curvature Il,,
on a hypersurface that determine “g through the usual
Cauchy existence theorem up to space-time diffeomor-
phisms.

C. Moncrief’'s decomposition and the slice

Since D®(5,4)* is elliptic, so is — JoD®(5,4)*.
Hence as in FMM, Sec. 2, we get

T T*C
= Range( — JoDP(5,4)*) ® Range(DP(5,4)*)
® [ker(D® (5,4 )0]))NkerDP(5,4)].

The first summand represents the infinitesimal gauge trans-
formations, the second summand is the orthogonal comple-
ment to the linearized constraints, and the last summand is
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the space of linearized “true” degrees of freedom, general-
ization of transverse-traceless quantities. The last summand
preserves the constraints modulo gauge freedom.

The slice at (5,,4,) for the action of %3 is given by (as
in AMM, Sec. 4) S, = {(60,4,)} + %, where % is a suit-
ably small ball in ker D®¢J. For details, see FMM and Isen-
berg and Marsden. '

IV. SUFFICIENCY OF SECOND-ORDER CONDITIONS:
CONICAL STRUCTURE OF SINGULARITIES

Here by singularities we mean those points in the set of
solutions of Einstein’s equations that are not linearization
stable, i.e., which by Theorem 2, admit symmetries. Since
results of linearized theory for Einstein’s field equations are
equivalent to those for constraint equations, we shall deal
with constraint equations.

By arguments in the proof of Theorem 1, it follows that
on 2, a symmetry (N,N°,N)eker D®(5,4)* satisfies either
(a) N =0 (i.e., all symmetries are tangent to 2) or (b) Nis
constant and the initial data are trivial, i.e., & corresponds to
a flat metric and I1 =0, 4 = 0. In case (a), which is the
“spacelike” case, there is a basis of ker D®* of the form

£0X,V,): i=12,..k, Lx5=1[V,5] and
- inAa = %'@a Vl}'

In case (b), the timelike case, there is a basis with (1,0,0) as
one element and the rest of the basis is as in case (a). Use of a
Kuranishi map to get the conical structure of singularities in
case (a) is exactly the same as AMM, Secs. 1 and 2 with
obvious changes in notations. We briefly sketch this.

Let P denote the L >-orthogonal projection to the range
of D®(5,,4,), Po denote the L *-orthogonal projection onto
the span of (0,X;,V;), and P, denote the projection onto
(1,0,0). Thus the ith component of Pgo® is given by
Ss(X9C, + Tr(V,Cg)) and Pyod = §; C(5,4). It follows
that if

¢ =1{(5,4)/Po®(5,4) =0},

%o =1{(5,4)/Peo®(5,4) =0}, (40)
and

an = {(&,A)/PHO(D(&,A) = 0},
then the space of solutions to constraint equations is

¥ =%€pN¥g incase (a)
and (41)

C =CpNE€eN%Ey incase (b),

where P = Py @ Py, . Then, using the slice described above,
properties of the Kuranishi map, and gauge invariance of
D 2®, we get the following theorem giving the conical struc-
ture of symmetry solutions of constraint equations in case
(a).

Theorem 3: The Kuranishi map F maps €, N% g NS,
locally one to one and onto the cone,

Co = {(G040)} + {(9,B)cker DPNker Do]|
Po(® — D®)(7,B) =0}.
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Thus removing gauges (slice conditions) as in FMM, this
gives a conical structure of the solutions of constraint equa-
tions admitting spacelike Killing fields.

For the sake of convenience of the reader, we give a
definition of a Kuranishi map and its properties used in the
proof of Theorem 3. For the proof of these properties, see
AMM, Sec. 1.

Kuranishi map: Let (50,d,) =x,c®~'(0) be fixed and
let A = D®(x,)°DP(x,)*. Then by ellipticity of D® (x,)*,
A is an isomorphism of Range D®(x,) toitself. Let P denote
the orthogonal projection to range D®(x,) and set
G = A~ 'oP, the Green’s function for A. Write y = x — x,
[x= (;,A)] and let the remainder be given by
R(y) = ®(x) — DP(x)y. Define the Kuranishi map F by

F(x) =x+ D®(x,)*°GoR(y).

Then F satisfies the following properties.

(i) Fis a diffeomorphism of a neighborhood of x, onto
itself.

(ii) F maps the slice S, at x,, to itself.

(iii) Fis alocal chart for €, and when restricted to €' p
NSy, F is a local symplectic diffeomorphism of & p NS, to
{xo} + (ker D®(x,) Nker DD (x,)°J).

(iv) The map of {x,} + ker D®(x,) to €, given by
Xg +y +—xy +y + ¥(p) is the inverse of the Kuranishi map
when restricted to %,. Here W¥: ker D®(x,)
—Range D®(x,)* is a map defined on a neighborhood of
zero such that ¥(0) =0, D¥(0) = 0, and such that €'p is
the graph of ¥, i.e., locally

Cp = {x=x,+y+ ¥(y)|ycker D®(x,)}.

To treat case (b), we need some more technical details
in addition to those needed in the proof of Theorem 3.

First, we need an analog of decomposition following
Lemma 2.4 of AMM. Define

o** = —Tr o0}
and (42)
A, = —Trd,op.

Recall that for case (b), o, corresponds to a flat metric g,
and A, = 0 = I, Since 4, is the self-dual part of the Weyl
tensor, it vanishes if the metric is flat. Then we prove the
following,

Lemma 4: Elements of € , NS, can be obtained as

&ab=6.0ab+7,"ab+ (%aqoab_'_\/iiDbVa)‘/%,
A, =B "+ 36490, + 8€.,D°C

+ 4D, Y, — (D, Y™)o,,) + 2V €y, (43)

where ¥ is a transverse traceless symmetric two-tensor
density, B¥,, is a transverse-traceless symmetric two-ten-
sor, and (C, ¥, V)€ domain of D®* is a function of ", , B”,
B.

Proof: We first compute D®(5,,0)*- (C,Y, V), where o,
corresponds to the flat metric g, In Eq. (31), put
Ao = 0= F,, and replace (N,N",N) by (C,Y,V) to get
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D®(5,,0)* (C,Y,V)
= (\/il‘@b V,4\/—2€dbm (Dd C)&Om

+ 4W2iL 5" — \2ilV,5,"]). (44)

Here we have used

[66°2,6,°] =i(Il, — (tr 15)8%,)5,™/go = O,

Iy =0.
Multiplying the second coordinate on the right-hand side of
(44) by — 0, /\g, and taking Tr, we get, after lowering the
indices,

86,5, D°C + 42i(D, Y, — (D, Y™)q,,,) + 2iV €.,

(45)

Similarly, multiplying the first coordinate by — &g, , taking
Tr, and raising the indices, we get

(\2iD °V *)\/q,. (45")
(These operations are in accord with the definition of D®*,
its domain, and its range.)

We now use the fact that elements of ker
DP(6,,0) Nker DP(6,,0)0] consist of pairs

(7’"” + %ang\/% ab + Yoas )
This can be proved by following Ashtekar.!* Combining this
fact, (45) and (45’), and the theory in AMM, Secs. 1 and 2,
(or FMM, Secs. 5-7), we get the required decomposition
(43) in the neighborhood of (5,,0).

We also need an analog of Lemma 2.5 of AMM.

Lemma 5: If £ 3, = }[N,G,], then

L(.E’N&)“”Aab = L(.E”Ny" Y*B",,. (46)

Proof: We first note that when there are no spinor in-
dices, .7  is the ordinary Lie derivative and for an ordinary
Lie derivative, the following identities hold:

(I f (Lxh )P0, = — Jh P (Lyxw)gp,
p A p
w being a tensor density,

(II) if D,k “* = 0 and Lyq, = 0, then D, (Lyk )** = 0.

We also note that by a simple calculation if . 5,
=1[N,5,], then Ly g5’ =0.

Since we are working within €', NS, (S =S 5,0, ) We
substitute decomposition (43) in the left-hand side of (46)
and obtain (for brevity g, = o)

[ @ra,
Z

=f LN(a'abo +y* + (iaqabo + \/iiDbVa),uo)
b3

X (B2s + V90us + 8€,5,D7C
+ 4\/ii(Da Yb - (Dm Ym)q()ab) + 2ch€cab )‘
Since 0,** = ¢,*° and L q, = 0, this becomes

1=J' Ly (3 +2iD*V%u,) -0,
=

R. V. Saraykar 193



where

O., = second bracket in the above integral
=B + - +2V,,,.
So,

I= — f (y" + 2DV uy) -LyO,,.
3

Now, by choice of the gauge ¥* = D* ¥ (which is valid
since we are working within the slice), we see that
D’0,, = 0. Hence the term

[2ovuo(LaBia) = = [ 72D (LoD
) )

=0 by identity (II). (48)

See also remark 1 after Eq. (58) in Ref. 1 (first paper),
where such a choice of gauge is justified for Hermiticity pre-
serving evolution equations. So if one does not wish to use
this gauge choice explicitly, one may work with Hermiticity
preserving evolution equations, keeping all classical relativi-
ty intact.

Thus the remaining terms in (47) are

- fr"»LND,,,,
P

(47)

= — [[#Lu(B" + B DC
p
+ 42D, Y, — (D,,Y ™) qoas) + 2V €01 )

_ f (Lyy") (B ", + 86,,D°C
=

+ 42D, Y, — (D,, Y ™")qoss) + 2iV € ). (49)
Since L, ¥**~ is symmetric in a,b, we get at once
(Ly¥") ™€, DPC=0 (50)
and
(La?") €V =0. (51)
Next, consider
J;LNT’““"D.: Y,=— L Y,D,(Lyy*)* =0, (52)

because D, ¥+ = 0 and so by identity (II),
D, (Lyy")* =0.
Lastly, consider {3 (Ly7")*(D,, ¥ ™)goq - Here
Goas (Ln7* )ab
= oo (N Dy — YD N® — y"*D, N *
+(DN*)7)
=N*D, (s V™) — (V'wD*N®+ ¥, D°N*)
+ (DN )Gog V'™
= =¥ (D*N®*+D*N*) = — V“bkLNq(b)k=0
(53)

since o7 =0and Lyg, =0. Thus combining (50)-
(53) with (49), the only term left is the right-hand side of
(46).

Note: Relations like
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f kabDb Va - —f Vankab
= P

are valid after integration by parts because = is compact and
all quantities involved are elements of suitable Sobolev
spaces and hence distributions with compact support, so that
boundary terms vanish.

We are now in a position to treat the timelike case, the
scalar (Hamiltonian) constraint. We have to study the inter-
section CNS;=LCxN€eNEpNS, From Lemma 4
above and Lemma 1.5 of AMM, C, Y, ¥ are smooth map-
pings of ¥**, B" ,a, B that together with their first derivatives
vanish at (0, 0, 0, 0) and have the following property: For
any a and £ and any (¢*, B*) satisfying

f (LN'yn)abB;tb =O,
=

where N, N,,....N, are Killing fields of g, (or satisfy
& §,80=}[N,5,)]), the data (6 ,4,, ) given by (43) lie in
€ pN%E o NS, Thus the mappings (C,Y,V) parametrize a
full neighborhood of (6,,0) in €pNE NS, in terms of
solutions (y*,B") of (54) and (a,8). The cone given by
(54) restricts (v**,B“) but leaves (a,8) unrestricted. Now
consider an affine submanifold of 7" *C:

M={(6,"+70)eT*C|Z,y* =0}.

(54)

We claim that each point of M is a critical point of the
function f: (5,4)—f; [C(6,4)/u,) and (5 [C(6,4)/u,]
vanishes on M. For this, we want to prove that
Df(6,4)-(9,B) =0, V(5,4)eM. Now,

Df(5,4)- (1,B) =DU M)'(nﬁ)
z Mo

- f DCGA) (n,B) L
=

Ho

- J; <Go ,0,0),D<I>(&,A)-(11,B)>
=L<D¢(&,A)*-(;1;,O,O),(n,3)>.

(55)

Now &, corresponds to flat g, and since & ,9* =0, ¥ also
corresponds to flat g because 4 = 0. So 6, + ¥ corresponds
to flat ¢, hence corresponding 4, and F,, are both zero.
Hence by (44),

D®(5,0)* (1/u0,0,0)
= (0,4426*™D, (1/114)5,,) = (0,0).

So, Df(5,0):(,B) =0, for
Df(6,0) =0, V(5,0)eM.

Thus each point of M is a critical point of £ 5 C(&,4 )/,
Hence D *f(5,,0) is well defined. The degeneracy space of
D?*(5,,0) is exactly T ;_o, M.

Arguments above also show that (3 [C(F,4)/u,] van-
ishes whenever (7,4)eM.

Now

every (0,0)eM, ie,
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C(6,4) = — 2 Tr 5 6°F,,
= — 265,55 ( — FyAa.

+ 3,4y +\267,4,,4,,). (56)

Next step is to substitute decompositions (43) for 3° and
A, in (56) and consider {5 [C(&,4)/p,]. This gives

~ tab a2t
C(o,4) =J‘l‘oB"“B”ab +J 7/ ab
= Mo b = Ho

— 682 vol.(3) + G(y"a,B"B). (5T)

Here B B,, contains terms w*®w,, + Vy-Vy and so (57)
tallies with expression in Lemma 3.1 of AMM. Combining
all above considerations, we get the following lemma (ana-
log of Lemma 3.1 of AMM).

Lemma 6: In a neighborhood of (5,,0) we have Eq.
(57) where first and second derivatives of G vanish at
(0,0,0,0). Also, each point of M is a critical point of
S5 [C(5,4)/1,) and 5 [C(5,4)/u,) vanishes on M. Also,
G vanishes on M and so do its first and second derivatives.
Here M is a nondegenerate critical manifold for
55 [C(8,4)/1,) in the sense of FMM, Sec. 6. Here (7,4) is
to be regarded as a function of variables *, a, B*, 5. With-
out imposing (54), we have to substitute (43) in
§s (1/u0)C(5,4). Thus §5 (1/4,)C(5,4) is a smooth func-
tion of ", &, B" , # and we have to consider its Taylor expan-
sion in these variables around (0,0,0,0).

The remaining procedure is then as in AMM, Sec._3 a_rld
we get a cone Cg defined by (54) in variables (¥*, @, B, B)
obtained from (y*, @, B”, §) by a change of coordinates
through the parametrized Morse lemma to eliminate the
higher-order terms. Cone Cy is defined by

1 2, t
B = o[ BBt [ Zrora| B
6LJz = o

with two branches ( + ). This corresponds to the scalar con-
straint.

Thus the cone CguNCyNS,
(¥ ,a,B" B) such that (54) holds and

consists of those

l z, {3
_7’""7"@ =0.

f (B"™ B Yu,— 68%vol. 2 +
z Mo
(59

Thus we get the final theorem.

Theorem 5: The association (y*,a,B".)—(6,4),
where (7,4) are given by (43) with 8=, (",a,B*,8)
defined by (58) with + depending on the sign of 5, is a one
to one correspondence between the cone Cg NCy NS, de-
fined by (54) and (59) and the nonlinear constraint set
% NS, in a neighborhood of (5,,0). This correspondence
maps straight lines in the cone through (&,,0) (i.e., a solu-
tion of the linearized equations satisfying the second-order
conditions) to a smooth curve in € N.S, with the same tan-
gent at (5,,0).

Hence second-order conditions on linearized perturba-
tions are sufficient for the existence of an exact perturbation
curve.

Gauge conditions can be removed by eliminating S, as
explained in FMM. See also Isenberg and Marsden.'?
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V. DISCUSSION AND FURTHER WORK

Results obtained above can also be derived for systems
coupled to Einstein equations, such as Einstein-Maxwell,
Einstein~Yang-Mills, and Einstein—-Klein—-Gordon with the
Einstein part treated through new variables (see Arms,*"
AMM, and Saraykar'® for results in the ADM formalism ).
Especially, preliminary calculations show that treatment of
the Einstein—Yang-Mills system is simplified due to similar-
ity in the expressions for momentum constraints in new vari-
ables and those of Yang-M ills. Also, the geometrical setting
remains the same. Calculations are not very different than
those presented here and the Fischer-Marsden—Moncrief
program runs quite along the same lines except for addi-
tional terms in the Yang-Mills variables.

In future, we propose to give a new variables approach
for asymptotically flat space-times capturing asymptotic be-
havior of the variables in suitable function spaces, say, Cho-
quet-Bruhat-Christodoulou weighted Sobolev spaces’® and
discuss linearization stability for these space-times. Follow-
ing an unpublished result of Ashtekar,'” we intend to prove
that such space-times are always linearization stable,
whether they admit symmetries or not.

Asin AMM, in the case of a compact Cauchy hypersur-
face, it follows that the space of solutions modulo bundle
automorphisms over diffeomorphisms is a stratified sym-
plectic manifold, i.e., a stratified manifold, each stratum of
which is symplectic. In the future, we wish to extend the
York analysis to new variables.'® Using the slice theorem
and this York analysis, it can then be proved (cf. Ref. 12)
that the generic points consisting of space-times with no
symmetries are an open and dense set. Thus the generic sym-
plectic stratum in the reduced space is also open and dense.
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A number of aspects of the phenomenon of gravitational repulsion in static sources of the
Reissner—Nordstrom field are investigated. It is found that in the case of perfect fluid spheres
there exists a close relation between this phenomenon and the Weyl curvature tensor. In fact, it
is proved that such a source gives rise to gravitational repulsion only if the pure gravitational
field energy inside the sphere is negative. It is also proved that although the gravitational
repulsion always takes place in the inter